Siberian Mathematical Journal

, Volume 58, Issue 3, pp 392–404 | Cite as

An extremal problem in the Hardy space H p for 0<p<∞

  • Kh. Kh. BurchaevEmail author
  • V. G. Ryabykh
  • G. Yu. Ryabykh


We prove that if the function determining a linear functional over the Hardy space is analytic on the disk of radius greater than 1 then the extremal function of this functional is analytic on the same disk.


Hardy space linear functional extremal function uniqueness derivative 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Day M. M., Normed Linear Spaces [Russian translation], Izdat. Inostr. Lit., Moscow (1961).Google Scholar
  2. 2.
    Khavinson S. Ya., “On some extremal problems of the theory of analytic functions,” Uch. Zap. MGU Mat., vol. 148, no. 4, 133–143 (1951).MathSciNetGoogle Scholar
  3. 3.
    Carleson L. and Jacobs S., “Best uniform approximations by analytic functions,” Arc. Math., vol. 10, no. 2, 219–229 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ryabykh V. G., “Approximation of non-analytic functions by analytic ones,” Sb. Math., vol. 197, no. 2, 225–233 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Burchaev Kh. Kh., Ryabykh V. G., and Ryabykh G. Yu., “The extremal functions of the functional induced by a polynomial over a Bergman space are C-analytic,” Itogi Nauki. Yug Rossii. Ser. Mat. Forum, vol. 8. Part 1, 204–214 (2014).Google Scholar
  6. 6.
    Duren P. L., Romberg B. W., and Shields A. L., “Linear functionals on H p space with 0 < p < 1,” J. Reine Angew. Math., vol. 238, 32–60 (1969).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Khavinson S. Ya., Fundamentals of the Theory of Extremal Problems for Bounded Analytic Functions and Various Generalizations [Russian], MISI, Moscow (1981).zbMATHGoogle Scholar
  8. 8.
    Garnett J., Bounded Analytic Functions, Academic Press, New York (1981).zbMATHGoogle Scholar
  9. 9.
    Pozharskii D. A., Ryabykh V. G., and Ryabykh G. Yu., Integral Operators in the Spaces of Analytic Functions and Related Spaces [Russian], Izdat. DGTU, Rostov-on-Don (2011).zbMATHGoogle Scholar
  10. 10.
    Tikhomirov V. M., Some Problems of Approximation Theory [Russian], Moscow Univ., Moscow (1976).Google Scholar
  11. 11.
    Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence (1969).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Kh. Kh. Burchaev
    • 1
    Email author
  • V. G. Ryabykh
    • 2
  • G. Yu. Ryabykh
    • 3
  1. 1.Chechnya State UniversityGroznyĭRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia
  3. 3.Don State Technical UniversityRostov-on-DonRussia

Personalised recommendations