Skip to main content
Log in

Prym differentials as solutions to boundary value problems on Riemann surfaces

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Construction of multiplicative functions and Prym differentials, including the case of characters with branch points, reduces to solving a homogeneous boundary value problem on the Riemann surface. The use of the well-established theory of boundary value problems creates additional possibilities for studying Prym differentials and related bundles. Basing on the theory of boundary value problems, we fully describe the class of divisors of Prym differentials and obtain new integral expressions for Prym differentials, which enable us to study them directly and, in particular, to study their dependence on the point of the Teichmüller space and characters. Relying on this, we obtain and generalize certain available results on Prym differentials by a new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunning R. C., Lectures on Vector Bundles over Riemann Surfaces, Princeton Univ. Press, Princeton (1967).

    MATH  Google Scholar 

  2. Gunning R. C., “On the period classes of Prym differentials. I,” J. Reine Angew. Math., 319, 153–171 (1980).

    MathSciNet  MATH  Google Scholar 

  3. Gunning R. C., Lectures on Riemann Surfaces: Jacobi Varieties, Princeton Univ. Press, Princeton (1972) (Princeton Math. Notes; V. 12).

    MATH  Google Scholar 

  4. Rodin J. L., Generalized Analytic Functions on Riemann Surfaces, Springer-Verlag, Berlin; Tokyo (1987) (Lect. Notes Math.; V. 1288).

    MATH  Google Scholar 

  5. Monakhov V. N. and Semenko E. V., Boundary-Value Problems and Pseudodifferential Operators on Riemann Surfaces [in Russian], Fizmatlit, Moscow (2003).

    MATH  Google Scholar 

  6. Liljestrom A., Sur les fonctions fuchsiennes à multiplicateurs constants, Almqvist & Wiksells, Uppsala (1910) (Arkiv für matematik, astronomi och fysik; Bd 6, Heft 20).

    MATH  Google Scholar 

  7. König R., “Arithmetische Theorie der verzweigten multiplikativen Funktionen und Differentiale,” J. Reine angew. Math., Bd 146, Heft 3, 161–184 (1916).

    MathSciNet  MATH  Google Scholar 

  8. Hurwitz A., “Zur Theorie der Abelschen Funktionen,” Geselllschaft der Wiss. Göttingen, 384–390 (1892) (Göttin. Nachr. Akad. Wiss. Berlin, Febr. 1892. S. 247–254).

    Google Scholar 

  9. Hurwitz A., “Über Riemannische Flaechen mit gegeben Verzweigungs punkten,” Math. Ann., Bd 39, 1–61 (1891) (Math. Werke. 1932. Bd. 1. S. 321–383).

    Article  MathSciNet  Google Scholar 

  10. Prym F. and Rost G., Theorie der Prymschen Funktionen erster Ordnung im Anschluss an die Schoepfungen Riemann’s, Teubner, Leipzig (1911).

    Google Scholar 

  11. Appell P., “Generalisation des fonctions doublement periodiques de seconde espece,” J. Math. Pures Appl. Ser. 3, 9, 5–24 (1883).

    Google Scholar 

  12. Appell P., “Sur les integrales de fonctions a multiplicateurs et leur application an developpement des fonctions abeliennes en series trigonometriques,” Acta Math., 13, No. 3/4, 1–174 (1890).

    Google Scholar 

  13. Appell P., Goursat E., and Fatou P., Théorie des fonctions algébriques, Chelsea Publ. Company, New York (1976).

    Google Scholar 

  14. Farkas H. M. and Kra I., Riemann Surfaces, Springer-Verlag, New York (1992) (Graduate Texts Math.; V. 71).

    Book  MATH  Google Scholar 

  15. Chueshev V. V., “Multiplicative Weierstrass points and the Jacobi variety of a compact Riemann surface,” Math. Notes, 74, No. 4, 593–598 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  16. Chueshev V. V., Multiplicative functions and Prym differentials on a variable compact Riemann surface. Part 2 [in Russian], Kemerovo State Univ., Kemerovo (2003).

    MATH  Google Scholar 

  17. Kazantseva A. A. and Chueshev V. V., “The spaces of meromorphic Prym differentials on a finite Riemann surface,” Sib. Math. J., 53, No. 1, 72–86 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  18. Zverovich È. I., “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces,” Russian Math. Surveys, 26, No. 1, 117–192 (1971).

    Article  MATH  Google Scholar 

  19. Monakhov V. N., Verkhovod D. B., and Semenko E. V., Boundary-Value Problems for Quasianalytic Functions on Compact Riemann Surfaces [in Russian], IGSO RAN SSSR, Novosibirsk (1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Semenko.

Additional information

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 57, No. 1, pp. 157–170, January–February, 2016; DOI: 10.17377/smzh.2016.57.112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenko, E.V. Prym differentials as solutions to boundary value problems on Riemann surfaces. Sib Math J 57, 124–134 (2016). https://doi.org/10.1134/S0037446616010122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446616010122

Keywords

Navigation