Skip to main content
Log in

Each 3-polytope with minimum degree 5 has a 7-cycle with maximum degree at most 15

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let φP (C 7) ( φT (C 7)) be the minimum integer k with the property that each 3-polytope (respectively, each plane triangulation) with minimum degree 5 has a 7-cycle with all vertices of degree at most k. In 1999, Jendrol’, Madaras, Soták, and Tuza proved that 15 ≤ φT (C 7) ≤ 17. It is also known due to Madaras, φSkrekovski, and Voss (2007) that φP (C 7) ≤ 359.

We prove that φP (C 7) = φT (C 7) = 15, which answers a question of Jendrol’ et al. (1999).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinitz E., “Polyheder und Raumeinteilungen,” Enzykl. Math. Wiss. (Geometrie), 3, No. 3AB12, 1–139 (1922).

    Google Scholar 

  2. Wernicke P., “über den Kartographischen Vierfarbensatz,” Math. Ann., 58, 413–426 (1904).

    Article  MathSciNet  Google Scholar 

  3. Franklin P., “The four color problem,” Amer. J. Math., 44, 225–236 (1922).

    Article  MATH  MathSciNet  Google Scholar 

  4. Lebesgue H., “Quelques conséquences simples de la formule d’Euler,” J. Math. Pures Appl., 19, 27–43 (1940).

    MATH  MathSciNet  Google Scholar 

  5. Jendrol’ S. and Madaras T., “On light subgraphs in plane graphs with minimum degree five,” Discuss. Math. Graph Theory, 16, 207–217 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  6. Borodin O. V. and Woodall D. R., “Short cycles of low weight in normal plane maps with minimum degree 5,” Discuss. Math. Graph Theory, 18, No. 2, 159–164 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  7. Kotzig A., “From the theory of Eulerian polyhedra,” Mat. Čas., 13, 20–34 (1963).

    MATH  MathSciNet  Google Scholar 

  8. Borodin O. V., “Solving the Kotzig and Grünbaum problems on the separability of a cycle in planar graphs,” Mat. Zametki, 46, No. 5, 9–12 (1989). (English translation: Math. Notes, 46, No. 5–6, 835–837 (1989).)

    MATH  Google Scholar 

  9. Grünbaum B., “Polytopal graphs,” in: Studies in Graph Theory. Part II (ed. D. R. Fulkerson), Washington, D. C., Math. Assoc. Amer., Vol. 12, 1975, pp. 201–224 (MAA Stud. Math.).

    Google Scholar 

  10. Plummer M. D., “On the cyclic connectivity of planar graphs,” in: Graph Theory and Applications, Springer-Verlag, Berlin, 1972, pp. 235–242.

    Chapter  Google Scholar 

  11. Borodin O. V., Ivanova A. O., and Woodall D. R., “Light C4 and C5 in 3-polytopes with minimum degree 5,” Discrete Math., 334, 63–69 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  12. Jendrol’ S. and Voss H.-J., Light Subgraphs of Graphs Embedded in the Plane and in the Projective Plane: a Survey, [Preprint / Inst. Algebra MATH–AL–2–2001], Discrete Math. TU Dresden (2001).

    Google Scholar 

  13. Jendrol’ S. and Voss H.-J., “Light subgraphs of graphs embedded in the plane and in the projective plane: a survey,” Discrete Math., 313, No. 4, 406–421 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  14. Jendrol’ S., Madaras T., Soták R., and Tuza Z., “On light cycles in plane triangulations,” Discrete Math., 197/198, 453–467 (1999).

    Article  Google Scholar 

  15. Madaras T. and Soták R., “The 10-cycle C10 is light in the family of all plane triangulations with minimum degree five,” Tatra Mt. Math. Publ., 18, 35–56 (1999).

    MathSciNet  Google Scholar 

  16. Mohar B., Škrekovski R., and Voss H.-J., “Light subgraphs in planar graphs of minimum degree 4 and edge-degree 9,” J. Graph Theory, 44, 261–295 (2003).

    Article  MathSciNet  Google Scholar 

  17. Borodin O. V., Ivanova A. O., and Kostochka A. V., “Every 3-polytope with minimum degree 5 has a 6-cycle with maximum degree at most 11,” Discrete Math., 315/316, 128–134 (2014).

    Article  MathSciNet  Google Scholar 

  18. Madaras T., Škrekovski R., and Voss H.-J., “The 7-cycle C7 is light in the family of planar graphs with minimum degree 5,” Discrete Math., 307, 1430–1435 (2007).

    Article  MathSciNet  Google Scholar 

  19. Borodin O. V., “Structural properties of plane maps with minimum degree 5,” Math. Nachr., 18, 109–117 (1992).

    Google Scholar 

  20. Ferencová B. and Madaras T., “Light graph in families of polyhedral graphs with prescribed minimum degree, face size, edge and dual edge weight,” Discrete Math., 310, 1661–1675 (2010).

    Article  MathSciNet  Google Scholar 

  21. Borodin O. V., “Structural theorem on plane graphs with application to the entire coloring,” J. Graph Theory, 23, No. 3, 233–239 (1996).

    Article  MathSciNet  Google Scholar 

  22. Borodin O. V., “Colorings of plane graphs: a survey,” Discrete Math., 313, No. 4, 517–539 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  23. Borodin O. V., “On acyclic colorings of planar graphs,” Discrete Math., 25, 198–223 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Borodin.

Additional information

Original Russian Text Copyright © 2015 Borodin O.V. and Ivanova A.O.

The authors were supported by the Russian Foundation for Basic Research (Grants 12–01–00631 and 15–01–05867 for the first author and Grant 12-01-98510 for the second author) and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-1939.2014.1). The second author worked within the governmental task “Organization of Scientific Research.”

Novosibirsk; Yakutsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 4, pp. 775–789, July–August, 2015; DOI: 10.17377/smzh.2015.56.405.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, O.V., Ivanova, A.O. Each 3-polytope with minimum degree 5 has a 7-cycle with maximum degree at most 15. Sib Math J 56, 612–623 (2015). https://doi.org/10.1134/S0037446615040059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446615040059

Keywords

Navigation