Siberian Mathematical Journal

, Volume 56, Issue 3, pp 541–548 | Cite as

On finite soluble groups with almost fixed-point-free automorphisms of noncoprime order

  • E. I. KhukhroEmail author


It is proved that if a finite p-soluble group G admits an automorphism φ of order p n having at most m fixed points on every φ-invariant elementary abelian p′-section of G, then the p-length of G is bounded above in terms of p n and m; if in addition G is soluble, then the Fitting height of G is bounded above in terms of p n and m. It is also proved that if a finite soluble group G admits an automorphism ψ of order p a q b for some primes p and q, then the Fitting height of G is bounded above in terms of |ψ| and |C G (ψ)|.


finite soluble group automorphism p-length Fitting height 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brauer R. and Fowler K. A., “On groups of even order,” Ann. Math. (2), 62, 565–583 (1955).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Thompson J. G., “Finite groups with fixed-point-free automorphisms of prime order,” Proc. Nat. Acad. Sci., 45, 578–581 (1959).zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Hartley B., “A general Brauer-Fowler theorem and centralizers in locally finite groups,” Pacific J. Math., 152, 101–117 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Higman G., “Groups and rings which have automorphisms without non-trivial fixed elements,” J. London Math. Soc., 32, No. 2, 321–334 (1957).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kreknin V. A., “Solvability of Lie algebras with regular automorphisms of finite period,” Soviet Math. Dokl., 4, 683–685 (1963).zbMATHGoogle Scholar
  6. 6.
    Kreknin V. A. and Kostrikin A. I., “Lie algebras with regular automorphisms,” Dokl. Akad. Nauk SSSR, 149, 249–251 (1963).MathSciNetGoogle Scholar
  7. 7.
    Khukhro E. I., “Lie rings and groups admitting an almost regular automorphism of prime order,” Math. USSR-Sb., 71, No. 1, 51–63 (1992).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kovács L. G., “Groups with regular automorphisms of order four,” Math. Z., Bd 75, 277–294 (1960/1961).CrossRefGoogle Scholar
  9. 9.
    Khukhro E. I. and Makarenko N. Yu., “Finite groups with an almost regular automorphism of order four,” Algebra and Logic, 45, No. 5, 326–343 (2006).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Alperin J. L., “Automorphisms of solvable groups,” Proc. Amer. Math. Soc., 13, 175–180 (1962).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Khukhro E. I., “Finite p-groups admitting an automorphism of order p with a small number of fixed points,” Math. Notes, 38, No. 5, 867–870 (1985).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Shalev A., “On almost fixed point free automorphisms,” J. Algebra, 157, 271–282 (1993).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Khukhro E. I., “Finite p-groups admitting p-automorphisms with few fixed points,” Russian Acad. Sci., Sb. Math., 80, 435–444 (1995).MathSciNetGoogle Scholar
  14. 14.
    Medvedev Yu., “p-Divided Lie rings and p-groups,” J. London Math. Soc. (2), 59, 787–798 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jaikin-Zapirain A., “On almost regular automorphisms of finite p-groups,” Adv. Math., 153, 391–402 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Thompson J., “Automorphisms of solvable groups,” J. Algebra, 1, 259–267 (1964).zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Turull A., “Fitting height of groups and of fixed points,” J. Algebra, 86, 555–566 (1984).zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hartley B. and Isaacs I. M., “On characters and fixed points of coprime operator groups,” J. Algebra, 131, 342–358 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Bell S. D. and Hartley B., “A note on fixed-point-free actions of finite groups,” Quart. J. Math. Oxford Ser. (2), 41, No. 162, 127–130 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Dade E. C., “Carter subgroups and Fitting heights of finite solvable groups,” Illinois J. Math., 13, 449–514 (1969).zbMATHMathSciNetGoogle Scholar
  21. 21.
    Mazurov V. D. and Khukhro E. I. (Eds.), The Kourovka Notebook: Unsolved Problems in Group Theory, 18th ed., Sobolev Inst. Math., Novosibirsk (2014). Google Scholar
  22. 22.
    Hartley B. and Turau V., “Finite soluble groups admitting an automorphism of prime power order with few fixed points,” Math. Proc. Cambridge Philos. Soc., 102, 431–441 (1987).zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Rae A., “Sylow p-subgroups of finite p-soluble groups,” J. London Math. Soc. (2), 71, 117–123 (1973).MathSciNetCrossRefGoogle Scholar
  24. 24.
    Hartley B. and Rae A., “Finite p-groups acting on p-soluble groups,” Bull. London Math. Soc., 5, 197–198 (1973).zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Kurzweil H., “Eine Verallgemeinerung von fixpunktfreien Automorphismen endlicher Gruppen,” Arch. Math. (Basel), 22, 136–145 (1971).zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Meixner T., “The Fitting length of solvable Hpn-groups,” Israel J. Math., 51, No. 1–2, 68–78 (1985).zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Wilson J. S., “On the structure of compact torsion groups,” Monatsh. Math., 96, No. 1, 57–66 (1983).zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Khukhro E. I. and Shumyatsky P., “Words and pronilpotent subgroups in profinite groups,” Austral. Math. Soc. J., 97, No. 3, 343–364 (2014).zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Hall P. and Higman G., “The p-length of a p-soluble group and reduction theorems for Burnside’s problem,” Proc. London Math. Soc. (3), 6, 1–42 (1956).zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Hoare A. H. M., “A note on 2-soluble groups,” J. London Math. Soc., 35, 193–199 (1960).zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Berger T. R. and Gross F., “2-Length and the derived length of a Sylow 2-subgroup,” Proc. London Math. Soc. (3), 34, 520–534 (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bryukhanova E. G., “Connection between the 2-length and the derived length of a Sylow 2-subgroup of a finite solvable group,” Math. Notes, 29, No. 2, 85–90 (1981).zbMATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Hartley B., “Automorphisms of finite soluble groups. Preliminary version,” MIMS EPrint: 2014.52.
  34. 34.
    Hartley B., “Some theorems of Hall-Higman type for small primes,” Proc. London Math. Soc. (3), 41, 340–362 (1980).zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Curtis C. W. and Reiner I., Representation Theory of Finite Groups and Associative Algebras, Interscience, New York and London (1962).zbMATHGoogle Scholar
  36. 36.
    Khukhro E. and Mazurov V., “Automorphisms with centralizers of small rank,” in: Groups St. Andrews 2005. Vol. II. Selected Papers of the Conference, St. Andrews, UK, July 30–August 6, 2005, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 564–585.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.University of LincolnLincolnUK

Personalised recommendations