Advertisement

Siberian Mathematical Journal

, Volume 56, Issue 3, pp 526–540 | Cite as

Universal functions and almost c-simple models

  • A. N. KhisamievEmail author
Article

Abstract

We introduce the concept of almost c-simple model and establish the existence of a universal Σ-function in the hereditarily finite superstructure of such a model. We construct families of almost c-simple trees and equivalences.

Keywords

hereditarily finite admissible set universal Σ-function almost c-simple model tree equivalence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goncharov S. S. and Sviridenko D. I., “Mathematical foundations of semantic programming,” Dokl. Akad. Nauk SSSR, 289, No. 6, 1324–1328 (1986).MathSciNetGoogle Scholar
  2. 2.
    Ershov Yu. L., Goncharov S. S., and Sviridenko D. I., “Semantic programming. Information processing,” Proc. IFIP 10th World Comput. Congress, Dublin, 10, 1093–1100 (1986).Google Scholar
  3. 3.
    Ershov Yu. L., Definability and Computability, Consultants Bureau, New York and London (1996).Google Scholar
  4. 4.
    Rudnev V. A., “A universal recursive function on admissible sets,” Algebra and Logic, 25, No. 4, 267–273 (1986).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Morozov A. S. and Puzarenko V. G., “Σ-Subsets of natural numbers,” Algebra and Logic, 43, No. 3, 162–178 ().Google Scholar
  6. 6.
    Kalimullin I. Sh. and Puzarenko V. G., “Computability principles on admissible sets,” Siberian Adv. Math., 15, No. 4, 1–33 (2005).MathSciNetGoogle Scholar
  7. 7.
    Puzarenko V. G., “Computability in special models,” Siberian Math. J., 46, No. 1, 148–165 (2005).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aleksandrova S. A., “The uniformization problem for Σ-predicates in a hereditarily finite list superstructure over the real exponential field,” Algebra and Logic, 53, No. 1, 1–8 (2014).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Korovina M. V., “On a universal recursive function and abstract machines on reals with list superstructure,” in: Structural Algorithmic Properties of Computability (Vychisl. Sistemy; No. 156) [in Russian], Novosibirsk, 1996, pp. 24–43.Google Scholar
  10. 10.
    Stukachev A. I., “The uniformization theorem in hereditary finite superstructures,” in: Generalized Computability and Definability [in Russian], Izdat. IM SO RAN, Novosibirsk, 1998, 161, pp. 3–14.Google Scholar
  11. 11.
    Khisamiev A. N., “On Σ-subsets of naturals over abelian groups,” Siberian Math. J., 47, No. 3, 574–583 (2006).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Khisamiev A. N., “Σ-Bounded algebraic systems and universal functions. I,” Siberian Math. J., 51, No. 1, 178–192 (2010).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Khisamiev A. N., “Σ-Bounded algebraic systems and universal functions. II,” Siberian Math. J., 51, No. 3, 537–551 (2010).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Khisamiev A. N., “Σ-Uniform structures and Σ-functions. I,” Algebra and Logic, 50, No. 5, 447–465 (2011).zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Khisamiev A. N., “Σ-Uniform structures and Σ-functions. II,” Algebra and Logic, 51, No. 1, 89–102 (2012).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Khisamiev A. N., “On a universal Σ-function over a tree,” Siberian Math. J., 53, No. 3, 551–553 (2012).zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Ershov Yu. L., Puzarenko V. G., and Stukachev A. I., “HF-Computability,” in: Computability in Context: Computation and Logic in the Real World, S. B. Cooper and A. Sorbi (eds.), Imperial College Press/World Sci., London, 2011, pp. 169–242.CrossRefGoogle Scholar
  18. 18.
    Kogabaev N. T., Kudinov O. V., and Miller R., “The computable dimension of I-trees of infinite height,” Algebra and Logic, 43, No. 6, 393–407 (2004).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Chang C. C. and Keisler H. J., Model Theory, North-Holland, Amsterdam and London (1973).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations