Advertisement

Siberian Mathematical Journal

, Volume 56, Issue 3, pp 505–515 | Cite as

Poisson and Filippov superalgebras

  • A. P. PozhidaevEmail author
Article

Abstract

We establish a connection between the Poisson superalgebras with some additional (Farkas) identity and the Filippov superalgebras. This construction yields all available simple Filippov algebras. We also exhibit new examples of simple finite-dimensional Filippov superalgebras of characteristic 2.

Keywords

Poisson superalgebra Filippov superalgebra simple superalgebra Grassmann superalgebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Farkas D. R., “Poisson polynomial identities,” Comm. Algebra, 26, No. 2, 401–416 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kantor I. L., “Jordan and Lie superalgebras determined by a Poisson algebra,” in: Proceedings of the Second Siberian School “Algebra and Analysis” (Tomsk, 1989), Amer. Math. Soc., Providence, 1992, pp. 55–80.Google Scholar
  3. 3.
    Bai R. and Wu Y., “Constructing 3-Lie algebras,” http://arxiv.org/pdf/1306.1994.pdf.
  4. 4.
    Pojidaev A. P., “Simple n-Lie algebras,” Algebra and Logic, 38, No. 3, 181–192 (1999).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Pojidaev A. P., “Enveloping algebras of Filippov algebras,” Comm. Algebra, 31, No. 2, 883–900 (2003).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cantarini N. and Kac V. G., “Classification of simple linearly compact n-Lie superalgebras,” Comm. Math. Phys., 298, 833–853 (2010).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bremner M., “Varieties of anticommutative n-ary algebras,” J. Algebra, 191, No. 1, 76–88 (1997).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations