Siberian Mathematical Journal

, Volume 56, Issue 3, pp 471–475 | Cite as

On groups of period 12

  • D. V. LytkinaEmail author
  • V. D. Mazurov


The local finiteness of a group of period 12 is proved, given that each of its subgroups generated by 3 elements of order 3 is finite.


periodic group period Burnside problem locally finite group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sanov I. N., “Solution of Burnside’s problem for exponent 4,” Leningrad. Gos. Univ. Uchen. Zap. Ser. Mat. Nauk, 10, No. 55, 166–170 (1940).MathSciNetGoogle Scholar
  2. 2.
    Hall M. Jr., “Solution of the Burnside problem for exponent six,” Illinois J. Math., 2, No. 4, 764–786 (1958).zbMATHMathSciNetGoogle Scholar
  3. 3.
    Newman M. F., “Groups of exponent six,” in: Computational Group Theory (Durham, 1982), Acad. Press, London, 1984, pp. 39–41.Google Scholar
  4. 4.
    Lysenok I. G., “Proof of a theorem of M. Hall concerning the finiteness of the groups B(m, 6),” Math. Notes, 41, No. 3, 241–244 (1987).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Mamontov A. S., “Groups of exponent 12 without elements of order 12,” Siberian Math. J., 54, No. 1, 114–118 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Lytkina D. V., Mazurov V. D., and Mamontov A. S., “Local finiteness of some groups of period 12,” Siberian Math. J., 53, No. 6, 1105–1109 (2012).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Mazurov V. D. and Mamontov A. S., “Involutions in groups of exponent 12,” Algebra and Logic, 52, No. 1, 67–71 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Huppert B., Endliche Gruppen. I, Springer-Verlag, Berlin, Heidelberg, and New York (1979).zbMATHGoogle Scholar
  9. 9.
    Hall P. and Higman G., “On the p-length of p-soluble groups and reduction theorems for Burnside’s problem,” Proc. London Math. Soc., 6, No. 3, 1–42 (1956).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Bryukhanova E. G., “The 2-length and 2-period of a finite solvable group,” Algebra and Logic, 18, No. 1, 5–20 (1979).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    GAP—Groups, Algorithms and Programming (

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Siberian State University of Telecommunications and Information SciencesNovosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations