Siberian Mathematical Journal

, Volume 56, Issue 3, pp 455–470 | Cite as

Admissible inference rules in the linear logic of knowledge and time LTK r with intransitive time relation

  • A. N. Luk’yanchukEmail author
  • V. V. Rybakov


We obtain a necessary condition and a sufficient condition for the admissibility of inference rules of the linear multi-modal logic of knowledge and time LTK r with reflexive and intransitive time relation. We also construct a special n-characterizing model for this logic.


multi-modal logic temporal logic epistemic logic n-characterizing model admissibility of inference rules 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fagin R., Halpern J. Y., Moses Y., and Vardi M. Y., Reasoning About Knowledge, MIT Press, Cambridge (1995).zbMATHGoogle Scholar
  2. 2.
    Thomason R. H., “Combination of tense and modality,” in: Handbook of Philosophical Logic. Vol. II (D. Gabbay, F. Guenthner (Eds.)), Reidel, Dordrecht, 1984, pp. 135–165.CrossRefGoogle Scholar
  3. 3.
    Gabbay D., Kurucz A., Wolter F., and Zakharyaschev M., Many-Dimensional Modal Logics: Theory and Applications, Elsevier and North-Holland, New York and Amsterdam (2003) (Stud. Logic Found. Math.; V. 148).Google Scholar
  4. 4.
    Halpern J. Y., van der Meyden R., and Vardi M. Y., “Complete axiomatization for reasoning about knowledge and time,” SIAM J. Comput., 33, No. 3, 674–703 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Lorenzen P., Einführung in die operative Logik und Mathematik, Springer-Verlag, Berlin, Göttingen, and Heidelberg (1955).CrossRefGoogle Scholar
  6. 6.
    Harrop R., “Concerning formulas of the types ABC, A → ∃xB(x) in intuitionistic formal systems,” J. Symbolic Logic, 25, No. 1, 27–32 (1960).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fridman H., “One hundred and two problems in mathematical logic,” J. Symbolic Logic, 40, No. 3, 113–130 (1975).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rybakov V. V., “A criterion for admissibility of rules in the model system S4 and the intuitionistic logic,” Algebra and Logic, 23, No. 5, 369–384 (1984).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Rybakov V. V., “Bases of admissible rules of the logics,” Algebra and Logic, 24, No. 1, 55–68 (1985).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Rybakov V. V., Admissibility of Logical Inference Rules, Elsevier, New York and Amsterdam (1997). (Stud. Logic Found. Math., 136.)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ghilardi S., “Unification in intuitionistic logic,” J. Symbolic Logic, 64, No. 2, 859–880 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Rybakov V., “Projective formulas and unification in linear temporal logic LTL U,” Logic J. IGPL, 22, No. 4, 665–672 (2014).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Odintsov S. and Rybakov V., “Unification and admissible rules for paraconsistent minimal Johanssons’ logic J and positive intuitionistic logic IPC+,” Ann. Pure Appl. Logic, 164, No. 7, 771–784 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Rybakov V., “Writing out unifiers for formulas with coefficients in intuitionistic logic,” Logic J. IGPL, 21, No. 2, 187–198 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Rybakov V., “Unifiers in transitive modal logics for formulas with coefficients (meta-variables),” Logic J. IGPL, 21, No. 2, 205–215 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Rybakov V., “Multi-agent logic based on temporary logic TS4K n serving web search,” KES, 243, 108–117 (2012).Google Scholar
  17. 17.
    Golovanov M., Kosheleva A., and Rybakov V., “Logic of visibility, perception, and knowledge and admissible inference rules,” Logic J. IGPL, 13, No. 2, 201–209 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Calardo E., “Admissible inference rules in the linear logic of knowledge and time LTK,” Logic J. IGPL, 14, No. 1, 15–34 (2006).zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Lukyanchuk A., “Decidability of multi-modal logic LTK of linear time and knowledge,” J. Siberian Federal Univ. Math. Phys., 6, No. 2, 220–226 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Siberian Federal UniversityKrasnoyarskRussia
  2. 2.Manchester Metropolitan UniversityManchesterUK

Personalised recommendations