Advertisement

Siberian Mathematical Journal

, Volume 56, Issue 3, pp 425–434 | Cite as

Structure of the maximal tori in spin groups

  • A. V. ZavarnitsineEmail author
Article

Abstract

We find the abelian invariants of the maximal tori in finite spin groups of types D l and B l .

Keywords

spin group maximal torus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buturlakin A. A. and Grechkoseeva M. A., “The cyclic structure of maximal tori of the finite classical groups,” Algebra and Logic, 46, No. 2, 73–89 (2007).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Deriziotis D. I. and Fakiolas A. P., “The maximal tori in the finite Chevalley groups of type E 6, E 7 and E 8,” Comm. Algebra, 19, No. 3, 889–903 (1991).zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Carter R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, Chichester and New York, etc. (1985).zbMATHGoogle Scholar
  4. 4.
    Jacobson N., Basic Algebra. II. 2nd ed., W. H. Freeman and Co., New York (1989).zbMATHGoogle Scholar
  5. 5.
    Carter R. W., Simple Groups of Lie Type, John Wiley and Sons, London etc. (1972) (Pure Appl. Math.; V. 28).zbMATHGoogle Scholar
  6. 6.
    Gorenstein D., Lyons R., and Solomon R., The Classification of the Finite Simple Groups. Number 3, Amer. Math. Soc., Providence (1998) (Math. Surveys Monogr.; V. 40.3).Google Scholar
  7. 7.
    Carter R. W., “Conjugacy classes in the Weyl group,” Comp. Math., 25, No. 1, 1–59 (1972).zbMATHGoogle Scholar
  8. 8.
    Grechkoseeva M. A., “Recognition by spectrum for finite linear groups over fields of characteristic 2,” Algebra and Logic, 47, No. 4, 229–241 (2008).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Zavarnitsine A. V., “Recognition of the simple groups L 3(q) by element orders,” J. Group Theory, 7, No. 1, 81–97 (2004).zbMATHMathSciNetGoogle Scholar
  10. 10.
    Bourbaki N., Éléments de mathématique. Fasc. XXXIV: Groupes et algèbres de Lie. Chapter IV: Groupes de Coxeter et systèmes de Tits. Chapter V: Groupes engendrés par des réflexions. Chapter VI: Systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris (1968).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations