Advertisement

Siberian Mathematical Journal

, Volume 56, Issue 3, pp 405–410 | Cite as

Commuting differential operators of rank 2 with trigonometric coefficients

  • V. N. DavletshinaEmail author
Article

Abstract

Some examples are constructed of commuting rank 2 self-adjoint differential operators of orders 4 and 4g + 2 with trigonometric coefficients.

Keywords

theory of spectral curves commuting differential operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burchnall J. L. and Chaundy I. W., “Commutative ordinary differential operators,” Proc. London Math. Soc. Ser., 2, No. 21, 420–440 (1923).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Krichever I. M., “Integration of nonlinear equations by the methods of algebraic geometry,” Funct. Anal. Appl., 11, No. 1, 12–26 (1977).zbMATHCrossRefGoogle Scholar
  3. 3.
    Krichever I. M., “Commutative rings of ordinary linear differential operators,” Funct. Anal. Appl., 12, No. 3, 175–185 (1978).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Krichever I. M. and Novikov S. P., “Holomorphic bundles over algebraic curves and non-linear equations,” Russian Math. Surveys, 35, No. 6, 53–79 (1980).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Mokhov O. I., “Commuting differential operators of rank 3 and nonlinear differential equations,” Math. USSR-Izv., 35, No. 3, 629–655 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Mironov A. E., “A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2,” Sb. Math., 195, No. 5, 711–722 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Mironov A. E., “On commuting differential operators of rank 2,” Sib. Elektron. Mat. Izv., 6, 533–536 (2009).zbMATHMathSciNetGoogle Scholar
  8. 8.
    Mironov A. E., “Commuting rank 2 differential operators corresponding to a curve of genus 2,” Funct. Anal. Appl., 39, No. 3, 240–243 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Zuo D., “Commuting differential operators of rank 3 associated to a curve of genus 2,” SIGMA, 8, No. 044, 1–11 (2012).Google Scholar
  10. 10.
    Mironov A. E., “Self-adjoint commuting ordinary differential operators,” Invent. Math., 197, No. 2, 417–431 (2014).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dixmier J., “Sur les algèbres de Weyl,” Bull. Soc. Math. France, 96, 209–242 (1968).zbMATHMathSciNetGoogle Scholar
  12. 12.
    Mokhov O. I., “On commutative subalgebras of the Weyl algebra related to commuting operators of arbitrary rank and genus,” Math. Notes, 94, No. 2, 298–300 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Mironov A. E., “Periodic and rapid decay rank two self-adjoint commuting differential operators,” in: Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014 Amer. Math. Soc. Transl. Ser. 2. Advances in the Mathematical Sciences. Vol. 234, Amer. Math. Soc., Providence, 2014, pp. 309–321.Google Scholar
  14. 14.
    Mokhov O. I., “Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coefficients,” in: Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014 Amer. Math. Soc. Transl. Ser. 2. Advances in the Mathematical Sciences. Vol. 234, Amer. Math. Soc., Providence, 2014, pp. 323–336.Google Scholar
  15. 15.
    Davletshina V. N. and Shamaev È. I., “On commuting differential operators of rank 2,” Siberian Math. J., 55, No. 4, 606–610 (2014).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Davletshina V. N., “On self-adjoint commuting differential operators of rank two,” Sib. Elektron. Mat. Izv., 10, 109–112 (2013).MathSciNetGoogle Scholar
  17. 17.
    Oganesyan V., “Commuting differential operators of rank 2 with polynomial coefficients,” arXiv: 1409.4058v2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations