Siberian Mathematical Journal

, Volume 56, Issue 3, pp 384–392 | Cite as

Gradewise properties of subgroups of finite groups

  • W. GuoEmail author
  • A. N. Skiba


Given a subgroup A of a group G and some group-theoretic property θ of subgroups, say that A enjoys the gradewise property θ in G whenever G has a normal series
$$1 = G_0 \leqslant G_1 \leqslant \cdots \leqslant G_t = G$$
such that for each i = 1, …, t the subgroup (AG i )G i−1/G i−1 enjoys the property θ in G/G i−1. Basing on this concept, we obtain a new characterization of finite supersolvable and solvable groups.


finite group subgroup functor gradewise property solvable group supersolvable group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guo W., Shum K. P., and Skiba A. N., “X-Semipermutable subgroups of finite groups,” J. Algebra, 215, 31–41 (2007).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Doerk K. and Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin and New York (1992).zbMATHCrossRefGoogle Scholar
  3. 3.
    Skiba A. N., “Finite groups with given systems of generalized permutable subgroups,” Izv. F. Scorina Gomel State University, 36, No. 3, 12–31 (2006).Google Scholar
  4. 4.
    Ballester-Bolinches A., Ezquerro L. M., and Skiba A. N., “Local embeddings of some families of subgroups of finite groups,” Acta Math. Sin., 25, 869–882 (2009).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Weinstein M. (ed.), Between Nilpotent and Solvable, Polygonal Publ. House, Passaic (1982).zbMATHGoogle Scholar
  6. 6.
    Johnson D. L., “A note on supersoluble groups,” Canad. J. Math., 23, No. 3, 562–564 (1971).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Guo X. Y. and Shum K. P., “Cover-avoidance properties and the structure of finite groups,” J. Pure Appl. Algebra, 181, 297–308 (2003).MathSciNetCrossRefGoogle Scholar
  8. 8.
    Guo X., Wang J., and Shum K. P., “On semi-cover-avoiding maximal subgroups and solvability of finite groups,” Comm. Algebra, 34, 3235–3244 (2006).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen M. S., “A remark on finite groups,” Tamkang J. Math., 8, 105–109 (1977).zbMATHMathSciNetGoogle Scholar
  10. 10.
    Kurzweil H. and Stellmacher B., The Theory of Finite Groups: An Introduction, Springer-Verlag, New York, Berlin, and Heidelberg (2004).CrossRefGoogle Scholar
  11. 11.
    Huppert B., Endliche Gruppen. I, Springer-Verlag, Berlin, Heidelberg, and New York (1979).zbMATHGoogle Scholar
  12. 12.
    Huppert B. and Blackburn N., Finite Groups. III, Springer-Verlag, Berlin, Heidelberg, and New York (1982).zbMATHCrossRefGoogle Scholar
  13. 13.
    Knyagina V. N. and Monakhov V. S., “On the π′-properties of a finite group possessing a Hall π-subgroup,” Siberian Math. J., 52, No. 2, 234–243 (2011).zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Monakhov V. S., “The product of a supersoluble cyclic or primary group,” in: Finite Groups [in Russian] (Trudy Gomel Sem., Gomel, 1975–1977), Nauka i Tekhnika, Minsk, 1978, pp. 50–63.Google Scholar
  15. 15.
    Zhang J., “Sylow numbers of finite groups,” J. Algebra, 176, No. 1, 111–123 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo Wenbin, “Finite groups with given indices of normalizers of Sylow subgroups,” Siberian Math. J., 37, No. 2, 253–258 (1996).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.School of Mathematical ScienceUniversity of Science and Technology of ChinaHefeiP. R. China
  2. 2.Skorina Gomel State UniversityGomelBelarus

Personalised recommendations