Advertisement

Siberian Mathematical Journal

, Volume 56, Issue 3, pp 379–383 | Cite as

The existence of pronormal π-Hall subgroups in E π-groups

  • E. P. VdovinEmail author
  • D. O. Revin
Article

Abstract

A subgroup H of a group G is called pronormal, if the subgroups H and H g are conjugate in 〈H, H g 〉 for every gG. It is proven that if a finite group G possesses a π-Hall subgroup for a set of primes π, then its every normal subgroup (in particular, G itself) has a π-Hall subgroup pronormal in G.

Keywords

pronormal subgroup Hall subgroup Eπ-property Frattini argument 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall P., “Theorems like Sylow’s,” Proc. London Math. Soc., 6, No. 22, 286–304 (1956).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Vdovin E. P. and Revin D. O., “Pronormality of Hall subgroups in finite simple groups,” Siberian Math. J., 53, No. 3, 419–430 (2012).zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Vdovin E. P. and Revin D. O., “On the pronormality of Hall subgroups,” Siberian Math. J., 54, No. 1, 22–28 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Guo W. and Revin D. O., “On the class of groups with pronormal Hall π-subgroups,” Siberian Math. J., 55, No. 3, 415–427 (2014).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Revin D. O. and Vdovin E. P., “Frattini argument for Hall subgroups,” J. Algebra, 414, 95–104 (2014).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Revin D. O. and Vdovin E. P., “On the number of classes of conjugate Hall subgroups in finite simple groups,” J. Algebra, 324, No. 12, 3614–3652 (2010).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Revin D. O. and Vdovin E. P., “Existence criterion for Hall subgroups of finite groups,” J. Group Theory, 14, No. 1, 93–101 (2011).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Vdovin E. P. and Revin D. O., “A conjugacy criterion for Hall subgroups in finite groups,” Siberian Math. J., 51, No. 3, 402–409 (2010).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Vdovin E. P. and Revin D. O., “Theorems of Sylow type,” Russian Math. Surveys, 66, No. 5, 829–870 (2011).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Suzuki M., Group Theory. II, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo (1986).zbMATHCrossRefGoogle Scholar
  11. 11.
    Revin D. O., “Hall π-subgroups of finite Chevalley groups whose characteristic belongs to π,” Siberian Adv. Math., 9, No. 2, 25–71 (1999).zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations