Skip to main content
Log in

Nonlinear approximation of function spaces of mixed smoothness

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the approximative properties of L q -greedy algorithms with respect to the wellknown system U d of shifts of Dirichlet kernels on the Nikol′skiĭ-Besov classes \(SB_{p\theta }^r (\mathbb{T}^d )\) and the Lizorkin-Triebel classes \(SF_{p\theta }^r (\mathbb{T}^d )\) of functions of mixed smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temlyakov V. N., “Greedy approximation,” Acta Numer., 17, 235–409 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  2. Temlyakov V. N., “Greedy algorithms with regard to multivariate systems with special structure,” Constr. Approx., 16, No. 3, 399–425 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  3. Amanov T. I., “Representation and embedding theorems for function spaces Sp,θ (r)B(Rn) and Sp*,θ (r)B(Rn) (0 ≦ xj ≦ 2π j = 1, …, n),” Trudy Mat. Inst. Steklov., 77, 5–34 (1965).

    MATH  MathSciNet  Google Scholar 

  4. Lizorkin P. I. and Nikol′skiĭ S. M., “Function spaces of mixed smoothness from decompositional point of view,” Proc. Steklov Inst. Math., 187, 163–184 (1990).

    MATH  Google Scholar 

  5. Nikol′skiĭ S. M., “A representation theorem for a class of differentiable functions of several variables in terms of entire functions of exponential type,” Dokl. Akad. Nauk SSSR, 150, No. 3, 484–487 (1963).

    MathSciNet  Google Scholar 

  6. Nikol′skiĭ S. M., “Functions with dominant mixed derivative, satisfying a multiple H¨older condition,” Sibirsk. Mat. Zh., 4, No. 6, 1342–1364 (1963).

    Google Scholar 

  7. Babenko K. I., “On approximation of periodic functions of several variables by trigonometric polynomials,” Dokl. Akad. Nauk SSSR, 132, No. 2, 247–250 (1960).

    Google Scholar 

  8. Babenko K. I., “On approximation of one class of periodic functions of several variables by trigonometric polynomials,” Dokl. Akad. Nauk SSSR, 132, No. 5, 982–985 (1960).

    Google Scholar 

  9. Nikol′skiĭ S. M., “Boundary properties of differentiable functions of several variables,” Dokl. Akad. Nauk SSSR, 146, No. 3, 542–545 (1962).

    MathSciNet  Google Scholar 

  10. Nikol′skiĭ S. M., “Stable boundary-value problems of a differentiable function of several variables,” Mat. Sb., 61, No. 2, 224–252 (1963).

    MathSciNet  Google Scholar 

  11. Temlyakov V. N., “Approximations of functions with bounded mixed derivative,” Proc. Steklov Inst. Math., 178, 1–121 (1989).

    MathSciNet  Google Scholar 

  12. Temlyakov V. N., Approximation of Periodic Functions, Nova Sci. Publ., New York (1993).

    MATH  Google Scholar 

  13. Temlyakov V. N., “Nonlinear methods of approximation,” Found. Comp. Math., 3, No. 1, 33–107 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  14. Amanov T. I., Spaces of Differentiable Functions with Dominating Mixed Derivative [in Russian], Nauka, Alma-Ata (1976).

    Google Scholar 

  15. Schmeisser H.-J. and Triebel H., Topics in Fourier Analysis and Function Spaces, Wiley, Chichester (1987).

    Google Scholar 

  16. Schmeisser H.-J., “Recent developments in the theory of function spaces with dominating mixed smoothness,” in: Nonlinear Analysis, Function Spaces and Applications: Proc. Spring School held in Prague, May 30–June 6, 2006, Czech Acad. Sci., Math. Inst., Prague, 2007, V. 8, pp. 145–204.

    Google Scholar 

  17. Nikol′skiĭ S. M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer, Berlin (1975).

    Book  Google Scholar 

  18. Dung D., “Continuous algorithms in n-term approximation and non-linear widths,” J. Approx. Theory, 102, No. 2, 217–242 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. Bazarkhanov D. B., “Nonlinear approximations of classes of periodic functions of many variables,” Proc. Steklov Inst. Math., 284, 2–31 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  20. Kashin B. S. and Saakyan A. A., Orthogonal Series, Amer. Math. Soc., Providence (1999).

    Google Scholar 

  21. Wojtaszczyk P., “On unconditional polynomial bases in Lp and Bergman spaces,” Constr. Approx., 13, No. 1, 1–15 (1997).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Balgimbayeva.

Additional information

The author was supported by Grants 0740/GF and 0245/GF3 of the Ministry of Education and Science of the Republic of Kazakhstan.

Almaty. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 2, pp. 322–337, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balgimbayeva, S.A. Nonlinear approximation of function spaces of mixed smoothness. Sib Math J 56, 262–274 (2015). https://doi.org/10.1134/S0037446615020068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446615020068

Keywords

Navigation