Skip to main content
Log in

On two classes of nonlinear dynamical systems: The four-dimensional case

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider two four-dimensional piecewise linear dynamical systems of chemical kinetics. For one of them, we give an explicit construction of a hypersurface that separates the attraction basins of two stable equilibrium points and contains an unstable cycle of this system. For the other system, we prove the existence of a trajectory not contained in the attraction basin of the stable cycle of this system described earlier by Glass and Pasternack. The homotopy types of the phase portraits of these two systems are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaidov Yu. A. and Golubyatnikov V. P., “On cycles and other geometric phenomena in phase portraits of some nonlinear dynamical systems,” in: Geometry and Applications, Springer, New York, 2014, pp. 225–233 (Springer Proc. Math. Stat.; V. 72).

    Google Scholar 

  2. Akinshin A. A., Golubyatnikov V. P., and Golubyatnikov I. V., “On some multidimensional models of the functioning of gene networks,” Sibirsk. Zh. Industr. Mat., 16, No. 1, 3–9 (2013).

    MathSciNet  Google Scholar 

  3. Golubyatnikov V. P., Likhoshvai V. A., and Ratushny A. V., “Existence of closed trajectories in 3-D gene networks,” J. 3-Dimensional Images 3D Forum, 18, No. 4, 96–101 (2004).

    Google Scholar 

  4. Elowitz M. B. and Leibler S., “A synthetic oscillatory network of transcription regulators,” Nature, 403, 335–338 (2000).

    Article  Google Scholar 

  5. Gardner T. S., Cantor C. R., and Collins J. J., “Construction of a genetic toggle switch in Escherichia coli,” Nature, 403, 339–342 (2000).

    Article  Google Scholar 

  6. Murray J. D., Mathematical Biology. I. An Introduction, Springer-Verlag, New York (2002).

    Google Scholar 

  7. Golubyatnikov V. P. and Golubyatnikov I. V., “On periodic trajectories in odd-dimensional gene networks models,” Russian J. Numerical Anal. Math. Modeling, 28, No. 4, 397–412 (2011).

    MathSciNet  Google Scholar 

  8. Gaidov Yu. A. and Golubyatnikov V. P., “On the existence and stability of cycles in gene networks with variable feedbacks,” Contemp. Math., 553, 61–74 (2011).

    Article  MathSciNet  Google Scholar 

  9. Golubyatnikov V. P., Likhoshvai V. A., Volokitin E. P., Gaidov Yu. A., and Osipov A. F., “Periodic trajectories and Andronov–Hopf bifurcations in models of gene networks,” in: Bioinformatics of Genome Regulation and Structure. II, Springer Science and Business Media Inc., Heidelberg, New York, Dordrecht, and London, 2006, pp. 405–414.

    Chapter  Google Scholar 

  10. Glass L. and Pasternack J. S., “Stable oscillations in mathematical models of biological control systems,” J. Math. Biology, 6, 207–223 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  11. Wilds R. and Glass L., “Contrasting methods for symbolic analysis of biological regulatory networks,” Phys. Rev., 80, 062902–1–062902–4 (2009).

  12. Akinshin A. A. and Golubyatnikov V. P., “Cycles in symmetric dynamic systems,” Vestnik NGU Ser. Mat. Mekh. Informat., 12, No. 2, 3–12 (2012).

    Google Scholar 

  13. Ayupova N. B. and Golubyatnikov V. P., “On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator,” J. Appl. Industr. Math., 8, No. 2, 1–6 (2014).

    Google Scholar 

  14. Volokitin E. P. and Treskov S. A., “The Andronov–Hopf bifurcation in a model of a hypothetical gene regulatory network,” J. Appl. Industr. Math., 1, No. 1, 127–136 (2007).

    Article  MathSciNet  Google Scholar 

  15. Gedeon T. and Mischaikow K., “Structure of the global attractor of cyclic feedback systems,” J. Dynamics Differ. Equations, 7, No. 1, 141–190 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  16. Hofbauer F., Mallet-Paret J., and Smith H., “Stable periodic solutions for hypercycle systems,” J. Dynamics Differ. Equations, 3, No. 3, 423–436 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  17. Lashina E. A., Chumakov G. A., and Chumakova N. A., “Maximal families of periodic solutions of a kinetic model of the heterogeneous catalytic reaction,” Vestnik NGU Ser. Mat. Mekh. Informat., 5, No. 4, 42–59 (2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Ayupova.

Additional information

The authors were supported by the Russian Foundation for Basic Research (Grant 12–01–0074) and Interdisciplinary Grant 80 of the Siberian Division of the Russian Academy of Sciences.

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 56, No. 2, pp. 282–289, March–April, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayupova, N.B., Golubyatnikov, V.P. On two classes of nonlinear dynamical systems: The four-dimensional case. Sib Math J 56, 231–236 (2015). https://doi.org/10.1134/S0037446615020044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446615020044

Keywords

Navigation