Skip to main content
Log in

On a generalization of the Lewittes theorem on Weierstrass points

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Suppose that X is a compact Riemann surface of genus g ≥ 2, while σ is an automorphism of X of order n, and g* is the genus of the quotient surface X* = X/〈σ〉. In 1951 Schöneberg obtained a sufficient condition for a fixed point PX of σ to be a Weierstrass point of X. Namely, he showed that P is a Weierstrass point of X if g* ≠ [g/n], where [x] is the integral part of x. Somewhat later Lewittes proved the following theorem, equivalent to Schöneberg’s theorem: If a nontrivial automorphism σ fixes more than four points of X then all of them are Weierstrass points.

These assertions are connected with the notion of a regular covering. We generalize the Lewittes theorem to the case of nonregular coverings and obtain some related corollaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schöneberg B., “Über die Weierstrass-Punkte in den Körpern der elliptischen Modulfunktionen,” Abh. Math. Sem. Univ. Hamburg, 17, 104–111 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  2. Lewittes J., “Automorphisms of compact Riemann surfaces,” Amer. J. Math., 85, No. 4, 734–752 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  3. Larcher H., “Weierstrass points at the cusps of Γ0(16p) and hyperellipticity of Γ0(n),” Canad. J. Math., 23, 960–968 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  4. Farkas H. M. and Kra I., Riemann Surfaces, Springer-Verlag, New York (1981) (Grad. Texts Math.; 71).

    Google Scholar 

  5. Guerrero I., “Automorphisms of compact Riemann surfaces and Weierstrass points,” in: Brook Conf. (State Univ. New York, Stony Brook, N.Y., 1978), Princeton Univ. Press, Princeton, NJ, 1981, pp. 215–224 (Ann. Math. Stud.; V. 97).

    Google Scholar 

  6. Accola R. D. M., “On generalized Weierstrass points on Riemann surfaces,” in: Modular Functions in Analysis and Number Theory, Univ. Pittsburgh, Pittsburgh, PA, 1983, pp. 1–19 (Lect. Notes Math. Stat.; V. 5).

    Google Scholar 

  7. Maclachlan C., “On Schoeneberg’s theorem,” Glasgow Math. J., 14, No. 2, 202–204 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  8. McQuillan D. L., “A note on Weierstrass points,” Canad. J. Math., 19, 268–272 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  9. Wayman A. K., “An elementary proof of a fixed point theorem of J. Lewittes and D. L. McQuillan,” Canad. Math. Bull., 21, 99–101 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  10. Garcia A. and Lax R. F., “Rational nodal curves with no smooth Weierstrass points,” Proc. Amer. Math. Soc., 124, 407–413 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  11. Springer G., Introduction to Riemann Surfaces, Addison-Wesley, Reading, MA (1957).

    MATH  Google Scholar 

  12. Accola R. D. M., “Strongly branched coverings of closed Riemann surfaces,” Proc. Amer. Math. Soc., 26, No. 2, 315–322 (1970).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Limonov.

Additional information

Original Russian Text Copyright © 2014 Limonov M.P.

The author was partially supported by the Laboratory of Quantum Topology at Chelyabinsk State University (Grant 14.Z50.31.0020 of the Government of the Russian Federation) and the Russian Foundation for Basic Research (Grant 12-01-00210).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 55, No. 6, pp. 1328–1333, November–December, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limonov, M.P. On a generalization of the Lewittes theorem on Weierstrass points. Sib Math J 55, 1084–1088 (2014). https://doi.org/10.1134/S003744661406010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744661406010X

Keywords

Navigation