Skip to main content
Log in

The Poincaré inequality for C 1,α-smooth vector fields

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We obtain the Poincaré inequality for the equiregular Carnot-Carathéodory spaces spanned by vector fields with Hölder class derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hörmander L., “Hypoelliptic second order differential equations,” Acta Math., 119, No. 1, 147–171 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  2. Rashevskiĭ P. K., “On the connectability of two arbitrary points of a totally nonholonomic space by an admissible curve,” Uchen. Zap. Mosk. Ped. Inst. Ser. Fiz.-Mat. Nauk, 3, No. 2, 83–94 (1938).

    Google Scholar 

  3. Chow W. L., “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung,” Math. Ann., 117, 98–105 (1939).

    MathSciNet  Google Scholar 

  4. Jerison D., “The Poincaré inequality for vector fields satisfying Hörmander’s condition,” Duke Math. J., 53, No. 2, 503–523 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  5. Jerison D. and Sanchez-Calle A., “Subelliptic, second order differential operators,” in: Complex Analysis. III (College Park, MD, 1985-86), Berlin, Springer-Verlag, pp. 46–77, 1987 (Lecture Notes Math.; V. 1277).

    Google Scholar 

  6. Varopoulos T., “Fonctions harmoniques sur les groupes Lie,” C. R. Acad. Sci. Paris Ser. I Math., 309, 519–521 (1987).

    MathSciNet  Google Scholar 

  7. Franchi B. and Lanconelli E., “Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients,” Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 10, No. 4, 523–541 (1983).

    MATH  MathSciNet  Google Scholar 

  8. Lu G., “Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications,” Rev. Mat. Iberoamericana, 8, No. 3, 367–439 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  9. Lu G., “The sharp Poincaré inequality for free vector fields: an endpoint result,” Rev. Mat. Iberoamericana, 10, No. 2, 453–466 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  10. Franchi B., “Weighted Sobolev-Poincaré inequalities and pointwise inequalities for a class of degenerate elliptic equations,” Trans. Amer. Math. Soc., 327, 125–158 (1991).

    MATH  MathSciNet  Google Scholar 

  11. Franchi B., Gutiérrez C. E., and Wheeden R. L., “Weighted Sobolev-Poincaré inequalities for Grushin type operators,” Comm. Partial Differential Equations, 19, 523–604 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  12. Isangulova D. V. and Vodopyanov S. K., “Coercive estimates and integral representation formulas on Carnot groups,” Eurasian Math. J., 1, No. 3, 58–96 (2010).

    MATH  MathSciNet  Google Scholar 

  13. Montanari A. and Morbidelli D., “Step-s involutive families of vector fields, their orbits and the Poincaré inequality,” J. Math. Pures Appl., 99, No. 4, 375–394 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  14. Lanconelli E. and Morbidelli D., “On the Poincaré inequality for vector fields,” Ark. Math., 38, No. 2, 327–342 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  15. Bramanti M., Brandolini L., and Pedroni M., “Basic properties of nonsmooth Hörmander’s vector fields and Poincaré’s inequality,” Forum Math., 25, No. 4, 703–769 (2013).

    MATH  MathSciNet  Google Scholar 

  16. Hajłasz P. and Koskela P., Sobolev met Poincaré, Amer Math. Soc., Providence, RI (2000) (Mem. Amer. Math. Soc.; V. 145, No. 688).

    Google Scholar 

  17. Chernikov V. M. and Vodopyanov S. K., “Sobolev spaces and hypoelliptic equations,” Siberian Adv. in Math., 6, No. 3, 27–67 (1996).

    MathSciNet  Google Scholar 

  18. Chernikov V. M. and Vodopyanov S. K., “Sobolev spaces and hypoelliptic equations. II,” Siberian Adv. in Math., 6, No. 4, 64–96 (1996).

    MathSciNet  Google Scholar 

  19. Karmanova M. and Vodopyanov S., “Geometry of Carnot-Carathéodory spaces, differentiability, coarea and area formulas,” in: Analysis and Mathematical Physics. Trends in Mathematics, Birkhäuser, Basel, 2009, pp. 233–335.

    Chapter  Google Scholar 

  20. Karmanova M. B., “Convergence of scaled vector fields and local approximation theorem on Carnot-Carathéodory spaces and applications,” Dokl. Math., 84, No. 2, 711–717 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  21. Greshnov A. V., “Proof of Gromov’s theorem on homogeneous nilpotent approximation for vector fields of class C 1,” Siberian Adv. in Math., 23, No. 3, 180–191 (2013).

    Article  Google Scholar 

  22. Basalaev S. G. and Vodopyanov S. K., “Approximate differentiability of mappings of Carnot-Carathéodory spaces,” Eurasian Math. J., 4, No. 2, 10–48 (2013).

    MATH  MathSciNet  Google Scholar 

  23. Karmanova M. and Vodopyanov S., On Local Approximation Theorem on Equiregular Carnot-Carathéodory Spaces, Springer Intern. Publ., Switzerland (2014) (Geometric Control and Sub-Riemannian Geometry. Springer INdAM Ser.; 5).

    Google Scholar 

  24. Mitchell J., “On Carnot-Carathéodory metrics,” J. Differential Geometry, 21, No. 1, 35–45 (1985).

    MATH  Google Scholar 

  25. Arnold V. I. and Ilyashenko Yu. S., Ordinary Differential Equations. Vol. 1 [in Russian], VINITI, Moscow (1985).

    Google Scholar 

  26. Nagel A., Stein E. M., and Wainger S., “Balls and metrics defined by vector fields. I: Basic properties,” Acta Math., 155, No. 1–2, 103–147 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  27. Gromov M., “Carnot-Carathéodory spaces seen from within,” in: Sub-Riemannian Geometry (Vol. 144), Birkhäuser, Basel, 1996, pp. 79–323.

    Chapter  Google Scholar 

  28. Metivier G., “Fonction spectrale et valeurs propres d’une classe d’opérateurs non elliptiques,” Comm. Partial Differential Equations, 1, 467–519 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  29. Rothschild L. P. and Stein E. M., “Hypoelliptic differential operators and nilpotent groups,” Acta Math., 137, No. 3–4, 247–320 (1976).

    Article  MathSciNet  Google Scholar 

  30. Lie S. and Engel F., Theorie der Transformationsgruppen. Bd 1–3, Leipzig (1888–1893).

    Google Scholar 

  31. Postnikov M. M., Lectures on Geometry. Semester V. Lie Groups and Algebras [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  32. Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton (1970).

    MATH  Google Scholar 

  33. Buckley S., Koskela P., and Lu G., “Boman equals John,” in: Proc. XVI Rolf Nevanlinna Colloq. (Joensuu, 1995), de Gruyter, Berlin, 1996, pp. 91–99.

    Google Scholar 

  34. Garofalo N. and Nhieu D.-M., “Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces,” Comm. Pure Appl. Math., 49, No. 10, 1081–1144 (1996).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Basalaev.

Additional information

Original Russian Text Copyright © 2014 Basalaev S.G.

The author was supported by the Grant of the Russian Federation for the State Support of Researches (Agreement 14.B25.31.0029).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 55, No. 2, pp. 267–284, March–April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basalaev, S.G. The Poincaré inequality for C 1,α-smooth vector fields. Sib Math J 55, 215–229 (2014). https://doi.org/10.1134/S0037446614020049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446614020049

Keywords

Navigation