Skip to main content
Log in

Particular features of implementation of an unsaturated numerical method for the exterior axisymmetric Neumann problem

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Using Babenko’s profound ideas, we construct a fundamentally new unsaturated numerical method for solving the spectral problem for the operator of the exterior axisymmetric Neumann problem for Laplace’s equation. We estimate the deviation of the first eigenvalue of the discretized problem from the eigenvalue of the Neumann operator. More exactly, the unsaturated discretization of the spectral Neumann problem yields an algebraic problem with a good matrix, i.e., a matrix inheriting the spectral properties of the Neumann operator. Thus, its spectral portrait lacks “parasitic” eigenvalues provided that the discretization error is sufficiently small. The error estimate for the first eigenvalue involves efficiently computable parameters, which in the case of C -smooth data provides a foundation for a guaranteed success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (2000).

    Book  Google Scholar 

  2. Babenko K. I., “Several remarks on discretization of elliptic problems,” Dokl. Akad. Nauk SSSR, 221, No. 1, 11–14 (1975).

    MathSciNet  Google Scholar 

  3. Belykh V. N., “An unsaturated numerical method for the exterior axisymmetric Neumann problem for Laplace’s equation,” Siberian Math. J., 52, No. 6, 980–994 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  4. Babenko K. I., Fundamentals of Numerical Analysis [in Russian], Nauka, Moscow (1986). (2nd edition: RCD, Moscow and Izhevsk, 2002.)

    Google Scholar 

  5. Agmon S., Douglis A., and Nirenberg L., Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations [Russian translation], Izdat. Inostr. Lit., Moscow (1962).

    Google Scholar 

  6. Gyunter N. M., Potential Theory and Its Applications to Basic Problems of Mathematical Physics [in Russian], Gostekhteoretizdat, Moscow (1953).

    Google Scholar 

  7. Mikhlin S. G., Multidimensional Singular Integrals and Integral Equations [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  8. Marcinkiewicz I., “Sur l’interpolation,” Studia Math., 6, 1–17 (1936).

    Google Scholar 

  9. Kato T., Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  10. Godunov S. K., Lectures on Modern Aspects of Linear Algebra [in Russian], Nauchnaya Kniga, Novosibirsk (2002).

    Google Scholar 

  11. Sobolev S. L., “Some remarks on the numerical solution to integral equations,” Izv. Akad. Nauk SSSR Ser. Mat., 20, No. 4, 413–436 (1956).

    MATH  MathSciNet  Google Scholar 

  12. Sobolev S. L., The Closure of Numerical Algorithms and Some of Its Applications [in Russian], Akad. Nauk SSSR, Moscow (1955).

    Google Scholar 

  13. Functional Analysis [in Russian], Ed. S. G. Kreĭn, Nauka, Moscow (1972).

    Google Scholar 

  14. Algazin S. D. and Babenko K. I., “On a numerical algorithm for solving the eigenvalue problem for linear differential operators,” Dokl. Akad. Nauk SSSR, 244, No. 5, 1049–1053 (1979).

    MathSciNet  Google Scholar 

  15. Algazin S. D., “Localization of eigenvalues of closed linear operators,” Siberian Math. J., 24, No. 2, 155–159 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  16. Algazin S. D., Numerical Algorithms of Classical Mathematical Physics [in Russian], Dialog-MIFI, Moscow (2010).

    Google Scholar 

  17. Belykh V. N., “On the best approximation properties of C -smooth functions on an interval of the real axis (to the phenomenon of unsaturated numerical methods),” Siberian Math. J., 46, No. 3, 373–387 (2005).

    Article  MathSciNet  Google Scholar 

  18. Golub G. and Van Loan C. F., Matrix Computations, Hindustan Book Agency, New Delhi (2007).

    MATH  Google Scholar 

  19. Godunov S. K., Antonov A. G., Kirilyuk O. P., and Kostin V. I., Guaranteed Accuracy in Solving Systems of Linear Equations in Euclidean Spaces [in Russian], Nauka, Novosibirsk (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Belykh.

Additional information

Original Russian Text Copyright © 2013 Belykh V.N.

The author was supported by the Russian Foundation for Basic Research (Grants 11-01-00147-a and 12-01-00061-a).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 54, No. 6, pp. 1237–1249, November–December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belykh, V.N. Particular features of implementation of an unsaturated numerical method for the exterior axisymmetric Neumann problem. Sib Math J 54, 984–993 (2013). https://doi.org/10.1134/S0037446613060037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446613060037

Keywords

Navigation