Siberian Mathematical Journal

, Volume 54, Issue 3, pp 545–554 | Cite as

Determining the image of some singular function

  • S. PonomarevEmail author
  • A. Gospodarczyk


The problem is as follows: How to describe graphically the set T(1)(Γ) where \(T(1)(z) = \int_\Gamma {\tfrac{{d\mu (\zeta )}} {{\zeta - z}}} \) and Γ = Γθ is the Von Koch curve, θ ∈ (0, π/4)? In this paper we give some expression permitting us to compute T θ(1)(z) for each z ∈ Γ to within an arbitrary ɛ > 0. Also we provide an estimate for the error.


Von Koch curve natural parametrization quasiconformal mapping pseudo-analytic mapping, Cauchy-type integral 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abreu-Blaya R., Bory-Reyes J., and Kats B. A., “Integration over non-rectifiable curves and Riemann boundary value problems,” J. Math. Anal. Appl., 380, No. 1, 177–187 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Harrison J. and Norton A., “The Gauss-Green theorem for fractal boundaries,” Duke Math. J., 67, No. 3, 575–588 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Havin V., “An analog of Laurent series,” in: Studies on Contemporary Problems of the Theory of Functions of a Complex Variable [in Russian], Fizmatgiz, Moscow, 1961, pp. 121–131.Google Scholar
  4. 4.
    Ponomarev S. P., “Some properties of Von Koch’s curves,” Siberian Math. J., 48, No. 6, 1046–1059 (2007).MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mori A., “On quasi-conformality and pseudo-analyticity,” Trans. Amer. Math. Soc., 84, No. 1, 2, 56–77 (1957).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ponomarev S. P., “On the question of AC-removability of quasi-conformal curves,” Soviet Math. Dokl., 17, No. 2, 469–471 (1976).zbMATHGoogle Scholar
  7. 7.
    Lehto O. and Virtanen K. I., Quasikonforme Abbildungen, Springer-Verlag, Berlin and New York (1965).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Pomeranian Academy in SlupskInstitute of MathematicsSlupskPoland
  2. 2.Institute of MathematicsUniversity of GdanskGdanskPoland

Personalised recommendations