Siberian Mathematical Journal

, Volume 54, Issue 3, pp 517–532 | Cite as

The localization for eigenfunctions of the dirichlet problem in thin polyhedra near the vertices

  • S. A. NazarovEmail author


Under some geometric assumptions, we show that eigenfunctions of the Dirichlet problem for the Laplace operator in an n-dimensional thin polyhedron localize near one of its vertices. We construct and justify asymptotics for the eigenvalues and eigenfunctions. For waveguides, which are thin layers between periodic polyhedral surfaces, we establish the presence of gaps and find asymptotics for their geometric characteristics.


Dirichlet problem asymptotics of spectrum localization of eigenfunctions spectral gaps 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kamotskiĭ I. V. and Nazarov S. A., “On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain,” J. Math. Sci., 101, No. 2, 2941–2974 (2000).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Nazarov S. A., “Localization effects for eigenfunctions near to the edge of a thin domain,” Math. Bohem., 127, No. 2, 283–292 (2002).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cardone G., Durante T., and Nazarov S. A., “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends,” SIAM J. Math. Anal., 42, No. 6, 2581–2609 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Friedlander L. and Solomyak M., “On the spectrum of narrow periodic waveguides,” Russian J. Math. Phys., 15, No. 2, 238–242 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Friedlander L. and Solomyak M., “On the spectrum of the Dirichlet Laplacian in a narrow strip,” Israel J. Math., 170, 337–354 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Borisov D. and Freitas P., “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains,” Ann. Inst. Henri Poincaré. Anal. Non Linéaire, 26, No. 2, 547–560 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Borisov D. and Freitas P., “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in ℝd,” J. Funct. Anal., 258, No. 3, 893–912 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Babich V. M. and Buldyrev V. S., Short-Wavelength Diffraction Theory. Asymptotic Methods, Springer-Verlag, Berlin etc. (1991).CrossRefGoogle Scholar
  9. 9.
    Vishik M. I. and Lyusternik L. A., “Regular degeneration and a boundary layer for linear differential equations with a small parameter,” Uspekhi Mat. Nauk, 12, No. 5, 3–122 (1957).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Birman M. Sh. and Solomyak M. Z., Spectral Theory of Selfadjoint Operators in Hilbert Space, D. Reidel Publ. Co., Dordrecht (1987).Google Scholar
  11. 11.
    Kuchment P. A., “Floquet theory for partial differential equations,” Russian Math. Surveys, 37, No. 4, 1–60 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gelfand I. M., “Expansion in eigenfunctions of an equation with periodic coefficients,” Dokl. Akad. Nauk SSSR, 73, 1117–1120 (1950).Google Scholar
  13. 13.
    Nazarov S. A., Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates [in Russian], Nauchnaya Kniga, Novosibirsk (2002).Google Scholar
  14. 14.
    Evans D. V., Levitin M., and Vassiliev D., “Existence theorems for trapped modes,” J. Fluid Mech., 261, No. 1, 21–31 (1994).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Problems of Mechanical EngineeringSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations