Advertisement

Siberian Mathematical Journal

, Volume 54, Issue 3, pp 487–500 | Cite as

Groups with the same prime graph as the orthogonal group B n (3)

  • Z. MomenEmail author
  • B. Khosravi
Article

Abstract

Let G be a finite group. The prime graph of G is denoted by Γ(G). It is proved in [1] that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then GB p (3) or C p (3). In this paper we prove the main result that if G is a finite group such that Γ(G) = Γ(B n (3)), where n ≥ 6, then G has a unique nonabelian composition factor isomorphic to B n (3) or C n (3). Also if Γ(G) = Γ(B 4(3)), then G has a unique nonabelian composition factor isomorphic to B 4(3), C 4(3), or 2 D 4(3). It is proved in [2] that if p is an odd prime, then B p (3) is recognizable by element orders. We give a corollary of our result, generalize the result of [2], and prove that B 2k+1(3) is recognizable by the set of element orders. Also the quasirecognition of B 2k (3) by the set of element orders is obtained.

Keywords

prime graph simple group recognition quasirecognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Momen Z. and Khosravi B., “On r-recognition by prime graph of B p(3) where p is an odd prime,” Monatsh. Math., 166, No. 2, 239–253 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Shen R., Shi W., and Zinov’eva M. R., “Recognition of simple groups B p(3) by the set of element orders,” Siberian Math. J., 51, No. 2, 244–254 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Hagie M., “The prime graph of a sporadic simple group,” Comm. Algebra, 31, No. 9, 4405–4424 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Khosravi B., Khosravi B., and Khosravi B., “Groups with the same prime graph as a CIT simple group,” Houston J. Math., 33, No. 4, 967–977 (2007).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Khosravi A. and Khosravi B., “Quasirecognition by prime graph of the simple group 2G2(q),” Siberian Math. J, 48, No. 3, 570–577 (2007).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zavarnitsine A. V., “Recognition of finite groups by the prime graph,” Algebra and Logic, 45, No. 4, 220–231 (2006).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Khosravi B., Khosravi B., and Khosravi B., “On the prime graph of PSL(2, p) where p > 3 is a prime number,” Acta. Math. Hungar., 116, No. 4, 295–307 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Khosravi B., “n-Recognition by prime graph of the simple group PSL(2, q),” J. Algebra Appl., 7, No. 6, 735–748 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Khosravi B., Khosravi B., and Khosravi B., “2-Recognizability of PSL(2, p 2) by the prime graph,” Siberian Math. J., 49, No. 4, 749–757 (2008).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Akhlaghi Z., Khatami M., and Khosravi B., “Quasirecognition by prime graph of the simple group 2 F 4(q),” Acta Math. Hungar., 122, No. 4, 387–397 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Khosravi B. and Babai A., “Quasirecognition by prime graph of F 4(q), where q = 2n > 2,” Monatsh. Math., 162, No. 3, 289–296 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Babai A. and Khosravi B., “Recognition of \(^2 D_{2^m + 1} (3)\) by the prime graph,” Siberian Math. J., 52, No. 5, 788–795 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Babai A., Khosravi B., and Hasani N., “Quasirecognition by prime graph of 2 D p(3) where p = 2n + 1 ≥ 5 is a prime,” Bull. Malays. Math. Sci. Soc. (2), 32, No. 3, 343–350 (2009).MathSciNetzbMATHGoogle Scholar
  14. 14.
    Khosravi B., Akhlaghi Z., and Khatami M., “Quasirecognition by prime graph of simple group D n(3),” Publ. Math. Debrecen, 78, No. 2, 469–484 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Khatami M., Khosravi B., and Akhlaghi Z., “NCF-distinguishability by prime graph of PGL(2, p), where p is a prime,” Rocky Mountain J. Math., 41, No. 5, 1523–1545 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Akhlaghi Z., Khosravi B., and Khatami M., “Characterization by prime graph of PGL(2, p k) where p and k > 1 are odd,” Internat. J. Algebra Comput., 20, No. 7, 847–873 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Khosravi B., “Quasirecognition by prime graph of L 10(2),” Siberian Math. J., 50, No. 2, 355–359 (2009).MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khosravi B., “Some characterizations of L 9(2) related to its prime graph,” Publ. Math. Debrecen, 75, No. 3–4, 375–385 (2009).MathSciNetzbMATHGoogle Scholar
  19. 19.
    Khosravi B., Khosravi B., and Khosravi B., “A characterization of the finite simple group L 16(2) by its prime graph,” Manuscripta Math., 126, No. 1, 49–58 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Khosravi B. and Moradi H., “Quasirecognition by prime graph of finite simple groups L n(2) and U n(2),” Acta Math. Hungar., 132, No. 1–2, 140–153 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Khosravi B. and Moradi H., “Quasirecognition by prime graph of some orthogonal groups over the binary field,” J. Algebra Appl., 11, No. 3, 1–15 (2012).MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shi W. and Tang C. Y., “A characterization of some finite orthogonal simple groups,” Progr. Natur. Sci., 7, No. 2, 155–162 (1997).MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lipschutz S. and Shi W. J., “Finite groups whose element orders do not exceed twenty,” Progr. Natur. Sci., 10, No. 1, 11–21 (2000).MathSciNetGoogle Scholar
  24. 24.
    The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed., Sobolev Inst. Math., Novosibirsk (2006).Google Scholar
  25. 25.
    Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford (1985).zbMATHGoogle Scholar
  26. 26.
    Vasil’ev A. V. and Gorshkov I. B., “On recognition of finite simple groups with connected prime graph,” Siberian Math. J., 50, No. 2, 233–238 (2009).MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zsigmondy K., “Zür Theorie der Potenzreste,” Monatsh. Math. Phys., 3, No. 1, 265–284 (1892).MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    He H. and Shi W., “Recognition of some finite simple groups of type D n(q) by spectrum,” Int. J. Algebra Comput., 19, No. 5, 681–698 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Mazurov V. D., “Characterizations of finite groups by sets of their element orders,” Algebra and Logic, 36, No. 1, 23–32 (1997).MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ireland K. and Rosen M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York etc. (1990).zbMATHCrossRefGoogle Scholar
  31. 31.
    Vasil’ev A. V. and Vdovin E. P., “An adjacency criterion for the prime graph of a finite simple group,” Algebra and Logic, 44, No. 6, 381–406 (2005).MathSciNetCrossRefGoogle Scholar
  32. 32.
    Vasil’ev A. V. and Vdovin E. P., “Cocliques of maximal size in the prime graph of a finite simple group,” Algebra and Logic, 50, No. 4, 291–322 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Stensholt E., “Certain embeddings among finite groups of Lie type,” J. Algebra, 53, No. 1, 136–187 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Lucido M. S., “Prime graph components of finite almost simple groups,” Rend. Sem. Mat. Univ. Padova, 102, 1–22 (1999).MathSciNetzbMATHGoogle Scholar
  35. 35.
    Guralnick R. M. and Tiep P. H., “Finite simple unisingular groups of Lie type,” J. Group Theory, 6, No. 3, 271–310 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Vasil’ev A. V., Gorshkov I. B., Grechkoseeva M. A., Kondrat’ev A. S., and Staroletov A. M., “On recognizability by spectrum of finite simple groups of types B n, C n, and 2 D n for n = 2k,” Proc. Steklov Inst. Math. (Suppl. issues), 267, No. 1, 218–233 (2009).MathSciNetGoogle Scholar
  37. 37.
    Shi W., “Pure quantitative characterization of finite simple groups,” Front. Math. China, 2, No. 1, 123–125 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Vasil’ev A. V., Grechkoseeva M. A., and Mazurov V. D., “Characterization of the finite simple groups by spectrum and order,” Algebra and Logic, 48, No. 6, 685–728 (2009).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Amirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations