Siberian Mathematical Journal

, Volume 54, Issue 3, pp 479–486 | Cite as

Measure-compact operators, almost compact operators, and linear functional equations in L p

  • V. B. Korotkov


Under study are the measure-compact operators and almost compact operators in L p . We construct an example of a measure-compact operator that is not almost compact. Introducing two classes of closed linear operators in L p , we prove that the resolvents of these operators are almost compact or measure-compact. We present methods for the reduction of linear functional equations of the second kind in L p with almost compact or measure-compact operators to equivalent linear integral equations in L p with quasidegenerate Carleman kernels.


almost compact operator measure-compact operator integral operator Carleman operator linear functional equation of the second kind in Lp linear integral equations in Lp 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weis L., “Integral operators and changes of density,” Indiana Univ. Math. J., 31, No. 1, 83–96 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Krasnosel’skiĭ M. A. et al., Integral Operators in Spaces of Summable Functions, The Netherlands, Noordhoff International Publishing (1976).CrossRefGoogle Scholar
  3. 3.
    Kashin B. S. and Saakyan A. A., Orthogonal Series [in Russian], AFTs, Moscow (1999).Google Scholar
  4. 4.
    Schachermayer W. and Weis L., “Almost compactness and decomposability of integral operators,” Proc. Amer. Math. Soc., 81, No. 4, 595–599 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Korotkov V. B., “Regular and compact factorization of integral operators in L p,” Math. Notes, 32, No. 5, 785–788 (1982).MathSciNetCrossRefGoogle Scholar
  6. 6.
    Korotkov V. B., Integral Operators [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  7. 7.
    Banach S., “Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales,” Fundam. Math., 3, 133–181 (1922).zbMATHGoogle Scholar
  8. 8.
    Sobolev S. L., Introduction to the Theory of Cubature Formulas, Gordon and Breach Science Publishers, Montreux (1974).Google Scholar
  9. 9.
    Hille E. and Phillips R. S., Functional Analysis and Semigroups, Amer. Math. Soc., Providence (1957).zbMATHGoogle Scholar
  10. 10.
    Korotkov V. B., Some Topics in the Theory of Integral Operators [in Russian], Inst. Mat., Novosibirsk (1988).Google Scholar
  11. 11.
    Pietsch A., Operator Ideals, VEB Deutscher Verlag der Wissenschaften, Berlin (1978).Google Scholar
  12. 12.
    Korotkov V. B., Integral Operators with Carleman-Type Kernels [in Russian], Diss. Dokt. Fiz.-Mat. Nauk, Inst. Mat., Novosibirsk (1971).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. B. Korotkov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations