Advertisement

Siberian Mathematical Journal

, Volume 54, Issue 3, pp 419–424 | Cite as

A completeness criterion for a double power system with degenerate coefficients

  • B. T. BilalovEmail author
  • F. A. Guliyeva
Article

Abstract

We consider a double power system with degenerate coefficients. Under certain conditions we obtain a completeness criterion for this system in the Lebesgue function space.

Keywords

completeness power system degeneration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Walsh J. L., Interpolation and Approximation by Rational Functions in the Complex Domain, Amer. Math. Soc., Providence, R.I. (1965).zbMATHGoogle Scholar
  2. 2.
    Shkalikov A. A., “A system of functions,” Math. Notes, 18, No. 6, 1097–1100 (1975).CrossRefGoogle Scholar
  3. 3.
    Kaz’min Yu. A., “Closure of the linear span of a system of functions,” Siberian Math. J., 18, No. 4, 565–570 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Kaz’min Yu. A., “Closure of linear spans of two systems of functions,” Dokl. Akad. Nauk SSSR, 236, No. 3, 535–537 (1977).MathSciNetGoogle Scholar
  5. 5.
    Tumarkin A. G., “Completeness of certain systems of functions,” Funct. Anal. Appl., 14, No. 2, 150–151 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Tumarkin A. G., “Completeness and minimality of certain systems of functions,” Siberian Math. J., 24, No. 1, 130–136 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Lyubarskiĭ Yu. I., “The completeness and minimality of the function systems of the form {a(tn(t) − b(tn(t)}N,” in: Function Theory, Functional Analysis, and Some of Their Applications [in Russian], Khar-kov, 1988, No. 49, pp. 77–86.Google Scholar
  8. 8.
    Lyubarskiĭ Yu. I., “Properties of systems of linear combinations of powers,” Leningrad Math. J., 1, No. 6, 1297–1369 (1990).MathSciNetGoogle Scholar
  9. 9.
    Bilalov B. T., “A necessary and sufficient condition for the completeness and minimality of a system of the form \(\{ A(t)\phi ^n (t);B(t)\bar \phi ^n (t)\} \),” Soviet Math., Dokl., 45, No. 1, 211–214 (1992).MathSciNetGoogle Scholar
  10. 10.
    Bilalov B. T., “The basis properties of some systems of exponential functions, cosines, and sines,” Siberian Math. J., 45, No. 2, 214–221 (2004).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bilalov B. T., “The basis properties of power systems in Lp,” Siberian Math. J., 47, No. 1, 18–27 (2006).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bilalov B. T. and Guseynov Z. G., “Basis properties of unitary systems of powers,” Proc. of Inst. Math. Mech. Natl. Acad. Sci. Azerb., 30, 37–50 (2009).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bilalov B. T., “A system of exponential functions with shift and the Kostyuchenko problem,” Siberian Math. J., 50, No. 2, 223–230 (2009).MathSciNetCrossRefGoogle Scholar
  14. 14.
    Veliev S. G., “Bases from subsets of eigenfunctions of two discontinuous differential operators,” Mat. Fiz. Anal. Geom., 12, No. 2, 148–157 (2005).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Veliev S. G., “Criteria for the completeness and minimality of a system of exponents with singularities,” Bull. Georgian Acad. Sci., 171, No. 1, 21–23 (2005).MathSciNetGoogle Scholar
  16. 16.
    Veliev S. G., “On completeness of eigenfunctions of two discontinuous differential operators,” Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 18, 141–146 (2003).MathSciNetzbMATHGoogle Scholar
  17. 17.
    Simonenko I. B., “Riemann’s boundary value problem with a continuous coefficient,” Dokl. Akad. Nauk SSSR, 124, No. 2, 278–281 (1959).MathSciNetzbMATHGoogle Scholar
  18. 18.
    Simonenko I. B., “Riemann’s boundary problem with a measurable coefficient,” Soviet Math., Dokl., 1, 1295–1298 (1960).MathSciNetzbMATHGoogle Scholar
  19. 19.
    Danilyuk I. I., “The Hilbert problem with measurable coefficients,” Sibirsk. Mat. Zh., 1, No. 2, 171–197 (1960).zbMATHGoogle Scholar
  20. 20.
    Mandzhavidze G. F. and Khvedelidze B. V., “On Riemann-Privalov’s problem with continuous coefficients,” Dokl. Akad. Nauk SSSR, 123, No. 5, 791–794 (1958).MathSciNetzbMATHGoogle Scholar
  21. 21.
    Danilyuk I. I., Irregular Boundary Value Problems on the Plane [in Russian], Nauka, Moscow (1975).Google Scholar
  22. 22.
    Bilalov B. T. and Eminov M. S., “On completeness of a system of powers,” Trans. Mech. Natl. Acad. Sci. Azerb., 26, No. 1, 45–50 (2006).MathSciNetzbMATHGoogle Scholar
  23. 23.
    Vekua I. N., Generalized Analytic Functions, Pergamon Press, Oxford, London, New York, and Paris (1962).zbMATHGoogle Scholar
  24. 24.
    Privalov I. I., Boundary Properties of Analytic Functions [in Russian], GITTL, Moscow (1950).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsBakuAzerbaijan

Personalised recommendations