Advertisement

Siberian Mathematical Journal

, Volume 54, Issue 3, pp 406–418 | Cite as

A sharp extrapolation theorem for lorentz spaces

  • E. I. BerezhnoĭEmail author
Article

Abstract

Basing on geometric properties, we give a complete characterization of the Lorentz spaces that can be sharp extrapolation spaces for different types of the behavior of the growth of the norms of an operator in tending to a critical exponent. The results of this article are connected with the calculation of extrapolation constructions in about the same way as theorems of the Calderón-Mityagin type.

Keywords

extrapolation of operators Lorentz space sharp extrapolation inequality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yano S., “An extrapolation theorem,” J. Math. Soc. Japan, 3, No. 2, 296–305 (1951).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berezhnoĭ E. I. and Perfil-ev A. A., “A sharp extrapolation theorem for operators,” Funct. Anal. Appl., 34, No. 3, 211–213 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Milman M., Extrapolation and Optimal Decompositions with Applications to Analysis, Springer-Verlag, Berlin (1994) (Lecture Notes in Math.; 1580).zbMATHGoogle Scholar
  4. 4.
    Jawerth B. and Milman M., “Extrapolation theory with applications,” Mem. Amer. Math. Soc., 89, No. 440, 1–82 (1991).MathSciNetGoogle Scholar
  5. 5.
    Karadzhov G. E. and Milman M., “Extrapolation theory: new results and applications,” J. Approx. Theory, 133, 38–99 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Astashkin S. V., “Extrapolation functors on a family of scales generated by the real interpolation method,” Siberian Math. J., 46, No. 2, 205–225 (2005).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zygmund A., Trigonometric Series. Vol. 1 and 2 [Russian translation], Mir, Moscow (1965).Google Scholar
  8. 8.
    Astashkin S. V. and Lykov K. V., “Extrapolatory description for the Lorentz and Marcinkiewicz spaces ‘close’ to L ,” Siberian Math. J., 47, No. 5, 797–812 (2006).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Astashkin S. V. and Lykov K. V., “Strong extrapolation spaces and interpolation,” Siberian Math. J., 50, No. 2, 199–213 (2009).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kreĭn S. G., Petunin Yu. I., and Semenov E. M., Interpolation of Linear Operators [in Russian], Nauka, Moscow (1978).Google Scholar
  11. 11.
    Lindenstrauss J. and Tzafriri L., Classical Banach Spaces. Vol. 1 and 2, Springer-Verlag, Berlin, Heidelberg, and New York (1977, 1979).CrossRefGoogle Scholar
  12. 12.
    Tao T., “A converse extrapolation theorem for translation-invariant operators,” J. Funct. Anal., 180, 1–10 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Brudnyi Yu. A. and Kruglyak N. Ya., Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam (1991).zbMATHGoogle Scholar
  14. 14.
    Berezhnoĭ E. I., “Estimates for a uniform modulus of continuity of functions from symmetric spaces,” Izv.: Math., 60, No. 2, 231–248 (1996).Google Scholar
  15. 15.
    Ulyanov P. L., “Luzin’s work on the metric theory of functions,” Russian Math. Surveys, 40, No. 3, 15–77 (1985).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Carro M., “On the range space of Yano’s extrapolation theorem and new extrapolation estimates at infinity,” Publ. Math., 27–37 (2002).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Yaroslavl’ State UniversityYaroslavl’Russia

Personalised recommendations