Siberian Mathematical Journal

, Volume 53, Issue 6, pp 1139–1154 | Cite as

Behavior at infinity of a solution to a differential-difference equation

  • M. S. SgibnevEmail author


We obtain an asymptotic expansion for a solution to an mth order nonhomogeneous differential-difference equation of retarded or neutral type. Account is taken of the influence of the roots of the characteristic equation. The exact asymptotics of the remainder is established depending on the asymptotic properties of the free term of the equation.


differential-difference equations retarded-type equation neutral-type equation asymptotic behavior characteristic equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Natanson I. P., Theory of Functions of Real Variable, Ungar, New York (1955).zbMATHGoogle Scholar
  2. 2.
    Bellman R. E. and Cooke K. L., Differential-Difference Equations, Academic Press, New York and London (1963).zbMATHGoogle Scholar
  3. 3.
    Hale J. K., Theory of Functional Differential Equations, Springer-Verlag, New York, Heidelberg, and Berlin (1984).Google Scholar
  4. 4.
    Vlasov V. V. and Ivanov S. A., “Estimates for solutions of nonhomogeneous differential-difference equations of neutral type,” Russian Math. (Izv. VUZ. Mat.), 50, No. 3, 22–28 (2006).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Lesnykh A. A., “Estimates of the solutions of difference-differential equations of neutral type,” Math. Notes, 81, No. 4, 503–517 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Vlasov V. V. and Medvedev D. A., “Functional-Differential Equations in Sobolev spaces related problems of spectral theory,” Contemporary Mathematics. Fundamental Trends [in Russian], 30, pp. 3–173 (2008).Google Scholar
  7. 7.
    Hille E. and Phillips R. S., Functional Analysis and Semigroups, Amer. Math. Soc., Providence (1957).zbMATHGoogle Scholar
  8. 8.
    Gelfand I. M., Raıkov D. A., and Shilov G. E., Commutative Normed Rings, Chelsea Publishing Company, New York (1964).Google Scholar
  9. 9.
    Sgibnev M. S., “Banach algebras of functions with identical asymptotic behavior at infinity,” Sibirsk. Mat. Zh., 22, No. 3, 179–187 (1981).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Feller W., An Introduction to Probability Theory and Its Applications. Vol. 2, John Wiley and Sons, Inc., New York etc. (1971).Google Scholar
  11. 11.
    Sgibnev M. S., “An asymptotic expansion of the solution to a system of integrodifferential equations with exact asymptotics for the remainder,” Siberian Math. J., 49, No. 3, 524–538 (2008).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rogozin B. A. and Sgibnev M. S., “Banach algebras of measures on the real axis,” Siberian Math. J., 21, No. 2, 160–169 (1980).MathSciNetGoogle Scholar
  13. 13.
    Markushevich A. I., The Theory of Analytic Functions. Vol. 1 [in Russian], Nauka, Moscow (1967).Google Scholar
  14. 14.
    Sgibnev M. S., “An asymptotic expansion for the distribution of the supremum of a random walk,” Studia Math., 140, 41–55 (2000).MathSciNetzbMATHGoogle Scholar
  15. 15.
    Seneta E., Regularly Varying Functions, Springer-Verlag, New York (1976).zbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations