Siberian Mathematical Journal

, Volume 53, Issue 6, pp 1119–1127 | Cite as

On a problem of nonoverlapping domains

  • V. A. PchelintsevEmail author


We solve the problem of finding the range E of some functional on the class of pairs of functions univalent in the system of the disk and the interior of the disk for the arbitrary parameters characterizing the functional. We prove that E is connected and bounded. Using the method of internal variations and the parametric method, we find the equation of the boundary of E. The obtained results extend Lebedev’s study [1].


functional nonoverlapping domains range method of internal variations parametric method elliptic integrals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lebedev N. A., “On the range of the restriction of a functional on nonoverlapping domains,” Dokl. Akad. Nauk SSSR, 115, No. 6, 1070–1073 (1957).MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aleksandrov I.A., “To the question on connection of the set of values of the functional,” Problems of Mathematics (Tr. Tomsk Univ.), 155, 72–76 (1961).Google Scholar
  3. 3.
    Lavrentiev M. A., “To the theory of conformal mappings,” Trudy Fiz.-Mat. Inst. Steklov., 5, 159–246 (1934).Google Scholar
  4. 4.
    Kufarev P. P., “To the question on conformal mappings with additional domains,” Dokl. Akad. Nauk SSSR, 73, No. 5, 881–884 (1950).MathSciNetzbMATHGoogle Scholar
  5. 5.
    Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence (1969).zbMATHGoogle Scholar
  6. 6.
    Lebedev N. A., “To the theory of conformal transformations of the circle on nonoverlapping domains,” Dokl. Akad. Nauk SSSR, 103, 553–555 (1955).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Aleksandrov I. A., Methods of the Geometric Theory of Analytic Functions [in Russian], Tomsk Univ., Tomsk (2001).Google Scholar
  8. 8.
    Löwner K., “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises,” Math. Ann., Bd 89, 103–121 (1923).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Aleksandrov I. A., Parametric Continuations in the Theory of Univalent Functions [in Russian], Nauka, Moscow (1976).zbMATHGoogle Scholar
  10. 10.
    Lebedev N. A., “The majorant domain for I = log{z λ[f′(z)]1−λ/[f(z)]λ} in the class S,” Vestnik Leningrad. Univ., 3, No. 8, 29–41 (1955).Google Scholar
  11. 11.
    Matveev R. N., Lectures on Analytic Theory of Differential Equations [in Russian], Lan’, St. Petersburg (2008).Google Scholar
  12. 12.
    Gradshteın I. S. and Ryzhik I. M., Tables of Integrals, Sums, Series, and Products, Academic Press, Boston (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations