Advertisement

Siberian Mathematical Journal

, Volume 53, Issue 6, pp 1075–1088 | Cite as

Stationary solutions to the equations of dynamics of mixtures of heat-conductive compressible viscous fluids

  • N. A. KucherEmail author
  • A. E. Mamontov
  • D. A. Prokudin
Article

Abstract

We consider the equations describing the three-dimensional steady motions of binary mixtures of heat-conductive compressible viscous fluids. An existence theorem for the boundary value problem that corresponds to flows in a bounded domain is proved in the class of weak generalized solutions.

Keywords

boundary value problem dynamics of mixtures Navier-Stokes equations weak solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rajagopal K. R. and Tao L., Mechanics of Mixtures, World Sci., Singapore (1995).zbMATHGoogle Scholar
  2. 2.
    Kucher N. A. and Prokudin D. A., “Stationary solutions to the equations of a mixture of compressible viscous fluids,” Sibirsk. Zh. Industr. Mat., 12, No. 3, 52–65 (2009).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Frehse J., Goj S., and Malek J., “On a Stokes-like system for mixtures of fluids,” SIAM J. Math. Anal., 36, No. 4, 1259–1281 (2005).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Goj S., Analysis for Mixtures of Fluids, Dissertation. Universitat Bonn. Math. Inst., 2005. Available at http://bib.math.uni-bonn.de/downloads/bms/BMS-375.pdf.
  5. 5.
    Frehse J. and Weigant W., “On quasi-stationary models of mixtures of compressible fluids,” Appl. Math., 53, No. 4, 319–345 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Antontsev S. N., Kazhikhov A. V., and Monakhov V. N., Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, North-Holland, Amsterdam (1990).zbMATHGoogle Scholar
  7. 7.
    Mucha P. and Pokorny M., “Weak solutions to equations of steady compressible heat conducting fluids,” Math. Models Methods Appl. Sci., 20, No. 5, 785–813 (2010).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Mucha P. and Pokorny M., “On the steady compressible Navier-Stokes-Fourier system,” Commun. Math. Phys., 288, No. 1, 349–377 (2007).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Petrov A. N., “Well-posedness of initial-boundary value problems for one-dimensional equations of interpenetrating motion of perfect gases,” Dinamika Sploshn. Sredy, No. 56, 105–121 (1982).Google Scholar
  10. 10.
    Papin A. A., Well-Posedness of Initial-Boundary Value Problems for One-Dimensional Equations of Motion of a Two-Phase Mixture [in Russian], AltGU, Barnaul (2007).Google Scholar
  11. 11.
    Lions P.-L., “Existence globale des solutions pour les équations de Navier-Stokes compressible isentropiques,” C. R. Acad. Sci. Paris Sér. I Math., No. 316, 1335–1340 (1993).Google Scholar
  12. 12.
    Lions P.-L., “Bornes sur la densité pour les équations de Navier-Stokes compressible isentropiques avec conditions aux limits de Dirichlet,” C. R. Acad. Sci. Paris Sér. I Math., No. 328, 659–662 (1999).Google Scholar
  13. 13.
    Feireisl E., Novotny A., and Petzeltova H., “On the existence of globally defined weak solutions to the Navier-Stokes equations,” J. Math. Fluid Mech., 3, 358–392 (2001).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Plotnikov P. I. and Sokolowski J., “Stationary solutions of Navier-Stokes equations for diatomic gases,” Russian Math. Surveys, 62, No. 3, 561–593 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lions P.-L., “Compacité des solutions des équations de Navier-Stokes compressible isentropiques,” C. R. Acad. Sci. Paris Sér. I Math., No. 317, 115–120 (1993).Google Scholar
  16. 16.
    Nigmatulin R. I., Dynamics of Multiphase Media. Vol. 1 [in Russian], Nauka, Moscow (1987).Google Scholar
  17. 17.
    Sedov L. I., A Course in Continuum Mechanics. Vol. I: Basic Equations and Analytical Techniques, Wolters-Noordhoff Publishing, Groningen, The Netherlands (1971).zbMATHGoogle Scholar
  18. 18.
    Maz’ya V. G., Sobolev Spaces, Springer-Verlag, Berlin (2011).zbMATHCrossRefGoogle Scholar
  19. 19.
    Nikol’skiĭ S. M., Approximation of Functions in Several Variables and Embedding Theorems [in Russian], Nauka, Moscow (1977).Google Scholar
  20. 20.
    Bogovskiĭ M. E., “Solution of some vector analysis problems connected with operators div and grad,” in: Trudy Seminara S. L. Soboleva, Inst. Mat. (Novosibirsk), Novosibirsk, 1980, 1, pp. 5–40.Google Scholar
  21. 21.
    Lions P.-L., Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models, Oxford Univ. Press, New York (1998).zbMATHGoogle Scholar
  22. 22.
    Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin etc. (1983).zbMATHCrossRefGoogle Scholar
  23. 23.
    Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York etc. (1985).Google Scholar
  24. 24.
    Solonnikov V. A., “General boundary value problems for Douglis-Nirenberg elliptic systems. II,” Proc. Steklov Inst. Math., 42, 269–339 (1968).Google Scholar
  25. 25.
    Agmon S., Douglis A., and Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II,” Comm. Pure Appl. Math., 17, 35–92 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ladyzhenskaya O. A. and Ural’tseva N. N., Linear and Quasilinear Elliptic Equations, Academic Press, New York and London (1968).zbMATHGoogle Scholar
  27. 27.
    Mikhaĭlov V. P., Partial Differential Equations [in Russian], Nauka, Moscow (1976).Google Scholar
  28. 28.
    Agmon S., Douglis A., and Nirenberg L., Estimates near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions [Russian translation], Izdat. Inostr. Lit., Moscow (1962).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. A. Kucher
    • 1
    Email author
  • A. E. Mamontov
    • 2
  • D. A. Prokudin
    • 1
  1. 1.Kemerovo State UniversityKemerovoRussia
  2. 2.Lavrent’ev Institute of HydrodynamicsNovosibirskRussia

Personalised recommendations