Advertisement

Siberian Mathematical Journal

, Volume 53, Issue 6, pp 1011–1020 | Cite as

The Carleman kernel and its applications

  • F. N. Garif’yanovEmail author
  • S. A. Modina
Article

Abstract

We examine the properties of the Carleman kernel and present some applications to the theory of entire functions and difference operators.

Keywords

Carleman boundary value problem difference equation moment problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carleman T., “Sur la théorie des équations intégrales et ses applications,” Verh. Int. Math. Kongress. Zurich, Bd I, 138–151 (1932).Google Scholar
  2. 2.
    Pokazeev V. I., “The Carleman boundary value problem for a fundamental polyhedron,” Uchen. Zap. Kazan Univ., 123, No. 10, 40–57 (1963).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chibrikova L. I., “The boundary value problems of the theory of analytic functions,” in: Mathematical Analysis [in Russian], VINITI, Moscow, 1980, 18, pp. 3–66 (Itogi Nauki i Tekhniki).Google Scholar
  4. 4.
    Chibrikova L. I., “The Carleman boundary value problem on the Riemann surface with boundary,” Uchen. Zap. Kazan Univ., 123, No. 10, 3–14 (1963).zbMATHGoogle Scholar
  5. 5.
    Zverovich È. I., “Boundary value problems in the theory of analytic functions in Hölder classes on Riemann surfaces,” Russian Math. Surveys, 26, No. 1, 117–192 (1971).CrossRefGoogle Scholar
  6. 6.
    Gakhov F. D., Boundary Value Problems [in Russian], Nauka, Moscow (1977).Google Scholar
  7. 7.
    Aksent’eva E. P. and Garif’yanov F. N., “On the investigation of an integral equation with a Carleman kernel,” Russian Math. (Izv. VUZ. Mat.), 27, No. 4, 53–63 (1983).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chibrikova L. I., “Solvability and application of a Carleman integral equation,” Dokl. Akad. Nauk SSSR, 78, No. 4, 817–820 (1984).MathSciNetGoogle Scholar
  9. 9.
    Chibrikova L. I., “Investigation of the solvability of a Fredholm integral equation and application of the equation,” Tr. Semin. Kraevym Zadacham (Kazan), No. 21, 193–209 (1984).Google Scholar
  10. 10.
    Garif’yanov F. N., “The problem of inverting a singular integral, and difference equations for functions that are analytic outside a square,” Russian Math. (Izv. VUZ. Mat.), 37, No. 7, 5–14 (1993).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Aksent’eva E. P. and Garif’yanov F. N., “On lacunary analogs of the Poincaré theta-series and their applications,” Siberian Math. J., 43, No. 5, 787–794 (2002).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Garif’yanov F. N., “Difference equations for functions analytic beyond several squares,” Siberian Math. J., 44, No. 3, 435–442 (2003).MathSciNetCrossRefGoogle Scholar
  13. 13.
    Garif’yanov F. N., “Biorthogonal series generated by a dihedral group,” Russian Math. (Izv. VUZ. Mat.), 45, No. 4, 9–13 (2001).MathSciNetGoogle Scholar
  14. 14.
    Garif’yanov F. N., “Stieltjes moments of entire functions of exponential type,” Math. Notes, 67, No. 5, 572–576 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Garif’yanov F. N., “On a certain difference equation and its application to the moment problem,” Math. Notes, 73, No. 6, 777–782 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hurwitz A. and Courant R., The Theory of Functions, Springer-Verlag, Berlin (1964).Google Scholar
  17. 17.
    Vinberg È. B. and Shvartsman O. V., “Riemann surfaces,” in: Algebra. Topology. Geometry. Vol. 16 [in Russian], VINITI, Moscow, 1978, pp. 191–245 (Itogi Nauki i Tekhniki).Google Scholar
  18. 18.
    Chibrikova L. I. and Sil’vestrov V. V., “On the question of the effectiveness of the solution of Riemann’s boundary value problem for automorphic functions To the question of efficiency of solving the Riemann boundary value problem for automorphic functions,” Soviet Math. (Izv. VUZ. Mat.), 22, No. 12, 85–88 (1978).MathSciNetGoogle Scholar
  19. 19.
    Bieberbach L., Analytic Continuation [Russian translation], Nauka, Moscow (1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Kazan State Energy UniversityKazanRussia

Personalised recommendations