Siberian Mathematical Journal

, Volume 53, Issue 6, pp 996–1010 | Cite as

Errors, condition numbers, and guaranteed accuracy of higher-dimensional spherical cubatures

  • V. L. VaskevichEmail author


We give upper bounds for the deviation of the norm of a perturbed error functional from the norm of the original error of a higher-dimensional spherical cubature formula. The deviation arises as a result of the combined influence on the computation of small variations of the weights of the cubature formula and rounding for the subsequent calculation of the cubature sum in the given standards of approximation to real numbers. We estimate the practical error of the cubature formula for its action on an arbitrary function in the unit ball of the normed space of integrands. The resulting estimates are applied to studying the practical error of spherical cubature formulas in the case of integrands in Sobolev-type spaces on the higher-dimensional unit sphere. We represent the norm of the error functional in the dual space of the Sobolev class as a positive definite quadratic form in the weights of the cubature formula. We estimate the practical error for spherical cubature formulas, each of which is constructed as the direct product of Gauss’s quadrature formula along the meridian of the sphere and of the rectangle quadrature formula along the equator. The weights of this direct product with 2m 2 nodes are positive. The formula itself is exact at all spherical harmonics up to order 2m − 1.


spherical cubature formula error functional Sobolev space on a higher-dimensional sphere embedding constants and functions practical error guaranteed accuracy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belykh V. N., “An unsaturated numerical method for the exterior axisymmetric Neumann problem for Laplace’s equation,” Siberian Math. J., 52, No. 6, 980–994 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Triebel H., “Sampling numbers and embedding constants,” Proc. Steklov Inst. Math., 248, 268–277 (2005).MathSciNetGoogle Scholar
  3. 3.
    Vaskevich V. L., “Embedding constants for periodic Sobolev spaces of fractional order,” Siberian Math. J., 49, No. 5, 806–813 (2008).MathSciNetCrossRefGoogle Scholar
  4. 4.
    Vaskevich V. L., “Embedding constants and embedding functions for Sobolev-like spaces on the unit sphere,” Dokl. Math., 82, No. 1, 568–572 (2010).zbMATHCrossRefGoogle Scholar
  5. 5.
    Sobolev S. L. and Vaskevich V. L., The Theory of Cubature Formulas, Kluwer Acad. Publ., Dordrecht (1997).zbMATHGoogle Scholar
  6. 6.
    Babenko K. I., Fundamentals of Numerical Analysis [in Russian], RCD, Moscow and Izhevsk (2002).Google Scholar
  7. 7.
    Godunov S. K., Antonov A. G., Kirilyuk O. P., and Kostin V. I., Guaranteed Accuracy in Numerical Linear Algebra, Kluwer Acad. Publ., Dordrecht, Boston, and London (1993).zbMATHGoogle Scholar
  8. 8.
    Golub G. and Van Loan C. F., Matrix Computations, John Hopkins University Press, Baltimore (1989).zbMATHGoogle Scholar
  9. 9.
    Demmel J., Applied Numerical Linear Algebra, SIAM, Philadelphia (1997).zbMATHCrossRefGoogle Scholar
  10. 10.
    Vaskevich V. L., “On the variation of error of a cubature formula due to small perturbations of its weights,” Computational Technologies, 11,Special issue, 19–26 (2006).zbMATHGoogle Scholar
  11. 11.
    Vaskevich V. L., “Criterion of computation with guaranteed accuracy for multidimensional integration,” Computational Technologies, 9,Special issue, 44–49 (2004).zbMATHGoogle Scholar
  12. 12.
    Sobolev S. L., Introduction to the Theory of Cubature Formulas [in Russian], Nauka, Moscow (1974).Google Scholar
  13. 13.
    Mikhlin S. G., Multidimensional Singular Integrals and Integral Equations, Pergamon Press, Oxford, London, Edinburgh, New York, Paris, and Frankfurt (1965).zbMATHGoogle Scholar
  14. 14.
    Ignatov M. I. and Pevnyi A. B., Natural Splines in Several Variables [in Russian], Nauka, Leningrad (1991).Google Scholar
  15. 15.
    Müller C., Spherical Harmonics, Springer-Verlag, Berlin (1966).zbMATHGoogle Scholar
  16. 16.
    Salikhov G. N., Cubature Formulas for Multidimensional Spheres [in Russian], Fan, Tashkent (1985).Google Scholar
  17. 17.
    Mysovskikh I. P., Interpolation Cubature Formulas [in Russian], Nauka, Moscow (1981).Google Scholar
  18. 18.
    Ditkin V. A., “On some approximate formulas for calculating triple integrals,” Dokl. Akad. Nauk SSSR, 62, No. 4, 445–447 (1948).MathSciNetzbMATHGoogle Scholar
  19. 19.
    Mysovskikh I. P., “On cubature formulas for calculating integrals on the surface of the sphere,” Sibirsk. Mat. Zh., 5, No. 3, 721–723 (1964).zbMATHGoogle Scholar
  20. 20.
    Krylov V. I., Approximate Calculation of Integrals [in Russian], Nauka, Moscow (1967).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations