Advertisement

Siberian Mathematical Journal

, Volume 53, Issue 6, pp 957–964 | Cite as

The resolvent equation of the one-dimensional Schrödinger operator on the whole axis

  • A. R. AlievEmail author
  • E. H. Eyvazov
Article

Abstract

Under certain conditions on the magnetic and electric potentials, we prove that the corresponding one-dimensional magnetic Schrödinger operator on the whole axis is selfadjoint and establish that Fredholm theory is applicable to the resolvent equation of this operator.

Keywords

magnetic Schrödinger operator quantum mechanics magnetic potential electric potential resolvent equatio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murtazin Kh. Kh. and Galimov A. N., “The spectrum and the scattering problem for the Schrödinger operator in magnetic field,” Math. Notes, 83, No. 3, 364–377 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Reed M. and Simon B., Methods of Modern Mathematical Physics. Vol. 3: Scattering Theory, Academic Press, New York (1979).Google Scholar
  3. 3.
    Povzner A. Ya., “On expansions in functions that are solutions of a scattering problem,” Dokl. Akad. Nauk SSSR, 104, No. 3, 360–363 (1955).MathSciNetzbMATHGoogle Scholar
  4. 4.
    Faddeev L. D., “Properties of the S-matrix of the one-dimensional Schrödinger equation,” Amer. Math. Soc., Transl., II. Ser., 65, 139–166 (1967).zbMATHGoogle Scholar
  5. 5.
    Naĭmark M. A., Linear Differential Operators, Frederick Ungar Publishing Co., New York (1969).Google Scholar
  6. 6.
    Everitt W. N. and Marcus L., Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-Differential Operators, Amer. Math. Soc., Providence (1999) (Math. Surv. Monogr.; V. 61).zbMATHGoogle Scholar
  7. 7.
    Savchuk A. M. and Shkalikov A. A., “Sturm-Liouville operators with singular potentials,” Math. Notes, 66, No. 6, 741–753 (1999).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Savchuk A. M. and Shkalikov A. A., “Sturm-Liouville operators with distribution potentials,” Moscow Math. Soc., 64, 143–192 (2003).MathSciNetGoogle Scholar
  9. 9.
    Dolgikh I. N. and Mirzoev K. A., “Deficiency indices and spectrum of self-adjoint extensions of some classes of differential operators,” Sb.: Math., 197, No. 4, 525–546 (2006).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Glazman I. M., Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Oldbourne Press, London (1965).zbMATHGoogle Scholar
  11. 11.
    Reed M. and Simon B., Methods of Modern Mathematical Physics. Vol. 4: Analysis of Operators, Academic Press, New York (1978).Google Scholar
  12. 12.
    Vladimirov V. S., Equations of Mathematical Physics, Marcel Dekker, Ins., New York (1971).Google Scholar
  13. 13.
    Marchenko V. A., Sturm-Liouville Operators and Applications, Chelsea Publishing, Providence (2011).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Mathematics and MechanicsBaku State UniversityBakuAzerbaijan
  2. 2.Baku State UniversityBakuAzerbaijan

Personalised recommendations