Skip to main content
Log in

On the local behavior of mappings with unbounded quasiconformality coefficient

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study space mappings more general than the mappings with bounded distortion in the sense of Reshetnyak. We consider questions related to the local behavior of mappings differentiable almost everywhere, possessing Properties N, N −1, ACP, and ACP −1, and such that quasiconformality coefficient satisfies a certain restriction on growth. We show that the value of a mapping satisfying these requirements on an arbitrary neighborhood of an essential singularity can be greater in absolute value than the logarithm of the inverse radius of the ball raised to an arbitrary positive power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Reshetnyak Yu. G., Space Mappings with Bounded Distortion, Amer. Math. Soc., Providence (1989).

    MATH  Google Scholar 

  2. Rickman S., Quasiregular Mappings, Springer-Verlag, Berlin (1993) (Results Math. Related Areas, (3); 26).

    MATH  Google Scholar 

  3. Reshetnyak Yu. G., “Generalized derivatives and differentiability almost everywhere,” Math. USSR-Sb., 4, 293–302 (1968).

    Article  MATH  Google Scholar 

  4. Bojarski B. and Iwaniec T., “Analytical foundations of the theory of quasiconformal mappings in ℝn,” Ann. Acad. Sci. Fenn. Ser. A I Math., 8, No. 2, 257–324 (1983).

    MathSciNet  MATH  Google Scholar 

  5. Väisälä J., “Modulus and capacity inequalities for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A I Math., 509, 1–14 (1972).

    Google Scholar 

  6. Martio O. and Ryazanov V., Srebro U., and Yakubov E., “Mappings with finite length distortion,” J. Anal. Math., 93, No. 1, 215–236 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. Martio O., Ryazanov V., Srebro U., and Yakubov E., Moduli in Modern Mapping Theory, Springer Science + Business Media, LLC, New York (2009).

    MATH  Google Scholar 

  8. Astala K., Iwaniec T., and Martin G. J., Elliptic Differential Equations and Quasiconformal Mappings in the Plane, Princeton Univ. Press, Princeton (2009).

    MATH  Google Scholar 

  9. Iwaniec T. and Martin G., Geometric Function Theory and Nonlinear Analysis, Oxford University Press, Oxford (2001).

    MATH  Google Scholar 

  10. Bishop C. J., Gutlyanskiĭ V. Ya., Martio O., and Vuorinen M., “On conformal dilatation in space,” Internat. J. Math. Math. Sci., 22, 1397–1420 (2003).

    Article  Google Scholar 

  11. Miklyukov V. M., “Relative distance of Lavrent’ev and prime ends on nonparametric surfaces,” Ukrainian Math. Bull., 1, No. 3, 353–376 (2004).

    MathSciNet  Google Scholar 

  12. Salimov R. R., “ACL and differentiability of a generalization of quasi-conformal maps,” Izv. Math., 72, No. 5, 977–984 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. Troyanov M. and Vodop’yanov S., “Liouville type theorems for mappings with bounded (co)-distortion,” Ann. Inst. Fourier, Grenoble, 52, No. 6, 1753–1784 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. Ukhlov A. D. and Vodop’yanov S. K., “Sobolev spaces and mappings with bounded (P;Q)-distortion on Carnot groups,” Bull. Sci. Math., 52, No. 4, 349–370 (2009).

    Google Scholar 

  15. Väisälä J., Lectures on n-Dimensional Quasiconformal Mappings, Springer-Verlag, Berlin etc. (1971) (Lecture Notes in Math.; 229).

    Google Scholar 

  16. Poletskiĭ E. A., “The modulus method for nonhomeomorphic quasiconformal mappings,” Math. USSR-Sb., 12, No. 2, 260–270 (1970).

    Article  Google Scholar 

  17. Ignat’ev A. A. and Ryazanov V. I., “Finite mean oscillation in the mapping theory,” Ukrainian Math. Bull., 2, No. 3, 403–424 (2005).

    MathSciNet  Google Scholar 

  18. John F. and Nirenberg L., “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, No. 3, 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  19. Sevost’yanov E. A., “The Väisälä inequality for mappings with finite length distortion,” Complex Variables Elliptic Equ., 55, No. 1–3, 91–101 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  20. Sevost’yanov E. A., “Towards a theory of removable singularities for maps with unbounded quasiconformality characteristic,” Izv. Math., 74, No. 1, 151–165 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. Sevost’yanov E. A., “On the normality of families of space mappings with branching,” Ukrainian Math. J., 60, No. 10, 1618–1632 (2008).

    Article  MathSciNet  Google Scholar 

  22. Sevost’yanov E. A., “Generalization of one Poletskij lemma to classes of space mappings,” Ukrainian Math. J., 61, No. 7, 1151–1157 (2009).

    Article  MathSciNet  Google Scholar 

  23. Sevost’yanov E., “On the local behavior of the mappings with non-bounded characteristics,” available at arXiv: 1103.2547v2 [math.CV] 7 Apr 2012, pp. 1–14.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sevost’yanov.

Additional information

Original Russian Text Copyright © 2012 Sevost’yanov E. A.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 53, No. 3, pp. 648–662, May–June, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevost’yanov, E.A. On the local behavior of mappings with unbounded quasiconformality coefficient. Sib Math J 53, 520–531 (2012). https://doi.org/10.1134/S0037446612020322

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446612020322

Keywords

Navigation