Skip to main content
Log in

Estimates for the rate of strong approximation in Hilbert space

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We obtain infinite-dimensional corollaries of our recent results. We show that the finite-dimensional results imply meaningful estimates for the accuracy of strong Gaussian approximation of sums of independent identically distributed Hilbert space-valued random vectors with finite power moments. We establish that the accuracy of approximation depends substantially on the decay rate of the sequence of eigenvalues of the covariance operator of the summands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Götze F. and Zaitsev A. Yu., “Rates of approximation in the multidimensional invariance principle for sums of i.i.d. random vectors with finite moments,” Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 368, 110–121 (2009).

    MathSciNet  Google Scholar 

  2. Götze F. and Zaitsev A. Yu., “Bounds for the rate of strong approximation in the multidimensional invariance principle,” Theor. Probability Appl., 53, No. 1, 59–80 (2009).

    Article  MATH  Google Scholar 

  3. Zaitsev A. Yu., “The rate of Gaussian strong approximation for the sums of i.i.d. multidimensional random vectors,” J. Math. Sci. (New York), 163, No. 4, 399–408 (2010).

    Article  Google Scholar 

  4. Sakhanenko A. I., “Estimates in the invariance principle,” in: Trudy Inst. Mat. SO RAN. Vol. 5, Novosibirsk, Nauka, 1985, pp. 27–44.

  5. Rosenthal H. P., “On the subspaces of L p (p > 2) spanned by sequences of independent random variables,” Israel J. Math., 8, 273–303 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  6. Rosenthal H. P., “On the span in L p of sequences of independent random variables. II,” in: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971). V. 2: Probability Theory, Univ. California Press, Berkeley, CA, 1972, pp. 149–167.

    Google Scholar 

  7. Bentkus V. Yu., Götze F., Paulauskas V., and Rǎckauskas A., “Accuracy of Gaussian approximation in Banach spaces,” in: Probability Theory-6. Limit Theorems in Probability Theory [in Russian] (Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya), 1991, 81, pp. 39–139.

    Google Scholar 

  8. Komlós J., Major P., and Tusnády G., “An approximation of partial sums of independent RV’-s and the sample DF. I, II,” Z. Wahrsch. Verw. Gebiete, I: Bd 32, 111–131 (1975); II: Bd 34, 34–58 (1976).

  9. Borovkov A. A., “On the rate of convergence for the invariance principle,” Theor. Probability Appl., 18, No. 2, 207–225 (1973).

    Article  MATH  Google Scholar 

  10. Major P., “The approximation of partial sums of independent r.v.’s,” Z. Wahrsch. Verw. Gebiete, Bd 35, 213–220 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  11. Einmahl U., “Extensions of results of Komlós, Major, and Tusnády to the multivariate case,” J. Multivariate Anal., 28, No. 1, 20–68 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. Borovkov A. A. and Sakhanenko A. I., “On the estimates of the rate of convergence in the invariance principle for Banach spaces,” Theor. Probability Appl., 25, No. 4, 721–731 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  13. Borovkov A. A., “On the rate of convergence in the invariance principle in Hilbert space,” Theor. Probability Appl., 29, No. 3, 550–553 (1985).

    Article  MATH  Google Scholar 

  14. Sakhanenko A. I., “Simple method of obtaining estimates in the invariance principle,” in: Lecture Notes in Math., V. 1299, 1988, pp. 430–443.

    Article  MathSciNet  Google Scholar 

  15. Sakhanenko A. I., “A new way to obtain estimates in the invariance principle,” in: High Dimensional Probability, II. Progr. Probab., 47 (Seattle, WA, 1999), Birkhäuser, Boston, MA, 2000, pp. 223–245.

    Google Scholar 

  16. de Acosta A., “Inequalities for B-valued random vectors with applications to the strong law of large numbers,” Ann. Probab., 9, 157–161 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson W. B., Schechtman G., and Zinn J., “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables,” Ann. Probab., 13, 234–253 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  18. Montgomery-Smith S. J., “Comparison of sums of independent identically distributed random vectors,” Probab. Math. Statist., 14, No. 2, 281–285 (1993).

    MathSciNet  MATH  Google Scholar 

  19. de la Peña V. H. and Giné E., Decoupling. From Dependence to Independence. Randomly Stopped Processes, U-Statistics and Processes, Martingales and Beyond, Springer-Verlag, New York (1999).

    Google Scholar 

  20. Berkes I. and Philipp W., “Approximation theorems for independent and weakly dependent random vectors,” Ann. Probab., 7, No. 1, 29–54 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  21. Feller W., An Introduction to Probability Theory and Its Applications. Vol. 2 [Russian translation], Mir, Moscow (1984).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Götze.

Additional information

Original Russian Text Copyright © 2011 Götze F. and Zaitsev A. Yu.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 52, No. 4, pp. 796–808, July–August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Götze, F., Zaitsev, A.Y. Estimates for the rate of strong approximation in Hilbert space. Sib Math J 52, 628–638 (2011). https://doi.org/10.1134/S0037446611040070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446611040070

Keywords

Navigation