Skip to main content
Log in

On Baer-Suzuki π-theorems

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Given a set π of primes, say that the Baer-Suzuki π-theorem holds for a finite group G if only an element of O π(G) can, together with each conjugate element, generate a π-subgroup. We find a sufficient condition for the Baer-Suzuki π-theorem to hold for a finite group in terms of nonabelian composition factors. We show also that in case 2 ∉ π the Baer-Suzuki π-theorem holds for every finite group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baer R., “Engelsche Elemente Noetherscher Gruppen,” Math. Ann., 133, 256–270 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  2. Suzuki M., “Finite groups in which the centralizer of any element of order 2 is 2-closed,” Ann. of Math (2), 82, No. 2, 191–212 (1968).

    Google Scholar 

  3. Alperin J. and Lyons R., “On conjugacy classes of p-elements,” J. Algebra, 19, No. 2, 536–537 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  4. Mamontov A. S., “An analog of the Baer-Suzuki theorem for infinite groups,” Siberian Math. J., 45, No. 2, 327–330 (2004).

    Article  MathSciNet  Google Scholar 

  5. Sozutov A. I., “On a generalization of the Baer-Suzuki theorem,” Siberian Math. J., 45, No. 3, 561–562 (2000).

    Article  MathSciNet  Google Scholar 

  6. Flavell P., A Weak Soluble Analogue of the Baer-Suzuki Theorem [Preprint]. Available at (http://web.mat.bham.ac.uk/P.J.Flavell/research/preprints).

  7. Guest S., “A solvable version of the Baer-Suzuki theorem,” Trans. Amer. Math. Soc., 362, No. 11, 5909–5946 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  8. Flavell P., Guest S., and Guralnick R., “Characterizations of the solvable radical,” Proc. Amer. Math. Soc., 138, No. 4, 1161–1170 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  9. Gordeev N., Grunewald F., Kunyavskii B., and Plotkin E., “A description of Baer-Suzuki type of the solvable radical of a finite group,” J. Pure Appl. Algebra, 213, No. 2, 250–258 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  10. Gordeev N., Grunewald F., Kunyavskii B., and Plotkin E., “Baer-Suzuki theorem for the solvable radical of a finite group,” C. R. Acad. Sci. Paris. Ser. I, 347, No. 5–6, 217–222 (2009).

    MATH  MathSciNet  Google Scholar 

  11. Gordeev N., Grunewald F., Kunyavskii B., and Plotkin E., “From Thompson to Baer-Suzuki: a sharp characterization of the solvable radical,” J. Algebra, 323, No. 10, 2888–2904 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  12. Tyutyanov V. N., “On the existence of solvable normal subgroups in finite groups,” Math. Notes, 61, No. 5, 632–634 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  13. Hall P., “Theorems like Sylow’s,” Proc. London Math. Soc., 6, No. 22, 286–304 (1956).

    Article  MATH  MathSciNet  Google Scholar 

  14. Wielandt H., “Zum Satz von Sylow,” Math. Z., Bd 60, No. 4, 407–408 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  15. Doerk K. and Hawkes T., Finite Soluble Groups, Walter de Gruyter, Berlin and New York (1992).

  16. Thompson J. G., “Hall subgroups of the symmetric groups,” J. Combin. Theory Ser. A, 1, No. 2, 271–279 (1966).

    Article  MATH  Google Scholar 

  17. Revin D. O. and Vdovin E. P., “Hall subgroups of finite groups,” in: Ischia Group Theory 2004: Proc. Conf. in Honour of Marcel Herzog. Contemp. Math., 2006, 402, pp. 229–265.

  18. Revin D. O., “The -property in finite simple groups,” Algebra and Logic, 47, No. 3, 210–227 (2008).

    Article  MathSciNet  Google Scholar 

  19. Mazurov V. D. and Revin D. O., “On the Hall -property for finite groups,” Siberian. Math. J., 38, No. 1, 106–113 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  20. Revin D. O., “Hall π-subgroups of finite Chevalley groups whose characteristic belongs to π,” Siberian Adv. Math., 9, No. 2, 25–71 (1999).

    MATH  MathSciNet  Google Scholar 

  21. Vdovin E. P. and Revin D. O., “Hall’s subgroups of odd order in finite groups,” Algebra and Logic, 41, No. 1, 8–29 (2002).

    Article  MathSciNet  Google Scholar 

  22. Revin D. O., “The -property in a class of finite groups,” Algebra and Logic, 41, No. 3, 187–206 (2002).

    Article  MathSciNet  Google Scholar 

  23. Revin D. O., “The -property of finite groups in the case when 2 ∉π,” Proc. Steklov Inst. Math., Suppl. 1, 164–180 (2007).

  24. Revin D. O., “Characterization of finite -groups,” Dokl. Akad. Nauk, 417, 601–604 (2007).

    MathSciNet  Google Scholar 

  25. Revin D. O., “The -property of linear and unitary groups,” Siberian Math. J., 49, No. 2, 353–361 (2008).

    Article  MathSciNet  Google Scholar 

  26. Revin D. O. and Vdovin E. P., “On the number of classes of conjugate Hall subgroups in finite simple groups,” J. Algebra, 324, No. 12, 3614–3652 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  27. Huppert B., Endliche Gruppen. I, Springer-Verlag, Berlin, Heidelberg, and New York (1967).

    MATH  Google Scholar 

  28. Suzuki M., Group Theory. I, Springer-Verlag, New York (1982).

    MATH  Google Scholar 

  29. Carter R. W., Simple Groups of Lie Type, John Wiley and Sons, London (1972).

    MATH  Google Scholar 

  30. Grove L. C., Classical Groups and Geometric Algebra. Graduate Studies Math. V. 39, Amer. Math. Soc., Providence, RI (2002).

    Google Scholar 

  31. Conway J. H., Curtis R. T., Norton S. P., Parker R. A., and Wilson R. A., Atlas of Finite Groups, Clarendon Press, Oxford (1985).

    MATH  Google Scholar 

  32. Kleidman P. B. and Liebeck M., The Subgroup Structure of the Finite Classical Groups, Cambridge University Press, Cambridge (1990).

    Book  MATH  Google Scholar 

  33. Gorenstein D., Lyons R., and Solomon R., The Classification of the Finite Simple Groups. Number 3, Amer. Math. Soc., Providence, RI (1998).

    MATH  Google Scholar 

  34. Feit W. and Thompson J., “Solvability of groups of odd order,” Pacific J. Math., 13, No. 3, 775–1029 (1963).

    MATH  MathSciNet  Google Scholar 

  35. Aschbacher M., Finite Group Theory, Cambridge University Press, Cambridge (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Revin.

Additional information

Original Russian Text Copyright © 2011 Revin D. O.

The author was supported by the Russian Foundation for Basic Research (Grants 08-01-00322, 10-01-00391, and 10-01-90007), the Program “Development of the Scientific Potential of Higher School” of the Russian Federal Agency for Education (Grant 2.1.1/419), the Federal Target Program “Scientific and Educational Personnel of Innovation Russia” for 2009–2013 (State Contracts 02.740.11.5191 and 14.740.11.0346)), and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant NSh-3669.2010.1).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 52, No. 2, pp. 430–440, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Revin, D.O. On Baer-Suzuki π-theorems. Sib Math J 52, 340–347 (2011). https://doi.org/10.1134/S0037446611020170

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446611020170

Keywords

Navigation