Skip to main content
Log in

Representation of orthogonally additive polynomials

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We prove that each bounded orthogonally additive homogeneous polynomial acting from an Archimedean vector lattice into a separated convex bornological space, under the additional assumption that the bornological space is complete or the vector lattice is uniformly complete, can be represented as the composite of a bounded linear operator and a special homogeneous polynomial which plays the role of the exponentiation absent in the vector lattice. The approach suggested is based on the notions of convex bornology and vector lattice power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sundaresan K., “Geometry of spaces of homogeneous polynomials on Banach lattices,” in: Applied Geometry and Discrete Mathematics. DIMACS Ser. Discrete Math. Theor. Comput. Sci. Math. Soc., Providence, 1991, pp. 571–586.

  2. Perez-Garcia D. and Villanueva I., “Orthogonally additive polynomials on spaces of continuous functions,” J. Math. Anal. Appl., 306, No. 1, 97–105 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. Carando D., Lassalle S., and Zalduendo I., “Orthogonally additive polynomials over C(K) are measures. A short proof,” Integral Equations Operator Theory, 56, No. 4, 597–602 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  4. Benyamini Y., Lassalle S., and Llavona J. G., “Homogeneous orthogonally additive polynomials on Banach lattices,” Bull. London Math. Soc., 38, No. 3, 459–469 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  5. Ibort A., Linares P., and Llavona J. G., “On the representation of orthogonally additive polynomials in l p,” Publ. Res. Inst. Math. Sci., 45, No. 2, 519–524 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  6. Aliprantis C. D. and Burkinshaw O., Positive Operators, Academic Press, Orlando (1985).

    MATH  Google Scholar 

  7. Luxemburg W. A. J. and Zaanen A. C., Riesz Spaces. Vol. 1, North-Holland, Amsterdam, London, and New York (1971).

    MATH  Google Scholar 

  8. Hogbe-Nlend H., Bornologies and Functional Analysis, North-Holland, Amsterdam, New York, and Oxford (1977) (Math. Stud.; V. 26).

    MATH  Google Scholar 

  9. Dineen S., Complex Analysis on Infinite Dimensional Spaces, Springer, London (1999).

    MATH  Google Scholar 

  10. Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, Birkhäuser, Basel, Boston, and Berlin (2009).

    Book  MATH  Google Scholar 

  11. Schaefer H. H., Topological Vector Spaces, Springer-Verlag, New York, Heidelberg, and Berlin (1971).

    Google Scholar 

  12. Boulabiar K. and Buskes G., “Vector lattice powers: f-algebras and functional calculus,” Comm. Algebra, 34, No. 4, 1435–1442 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  13. Buskes G. J. H. M. and van Rooij A. C. M., “Squares of Riesz spaces,” Rocky Mountain J. Math., 31, No. 1, 45–56 (2004).

    Article  Google Scholar 

  14. Kusraev A. G. and Tabuev S. N., “Some properties of orthosymmetric bilinear operators,” in: (Eds.: Yu. F. Korobeĭnik and A. G. Kusraev) Mathematical Forum. Studies on Mathematical Analysis [in Russian], Vladikavkaz, VNTs RAN, 2008, Vol. 1, pp. 104–124.

    Google Scholar 

  15. Boulabiar K., “Products in almost f-algebras,” Comment. Math. Univ. Carolin., 41, No. 4, 747–759 (2000).

    MATH  MathSciNet  Google Scholar 

  16. Buskes G. and van Rooij A., “Almost f-algebras: Commutativity and the Cauchy-Schwarz inequality,” Positivity, 4, No. 3, 227–231 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  17. Buskes G. and Kusraev A. G., “Representation and extension of orthoregular bilinear operators,” Vladikavkazsk. Mat. Zh., 9, No. 1, 16–29 (2007).

    MathSciNet  Google Scholar 

  18. Ben Amor F., “On orthosymmetric bilinear operators,” Positivity, 14, No. 1, 123–134 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  19. Quinn J., “Intermediate Riesz spaces,” Pacific J. Math., 56, No. 1, 225–263 (1975).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Kusraeva.

Additional information

Original Russian Text Copyright © 2011 Kusraeva Z. A.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 52, No. 2, pp. 315–325, March–April, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusraeva, Z.A. Representation of orthogonally additive polynomials. Sib Math J 52, 248–255 (2011). https://doi.org/10.1134/S003744661102008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003744661102008X

Keywords

Navigation