Skip to main content
Log in

Catalytic Transfer Hydrogenation of Furfural over CuNi@C Catalyst Prepared from Cu–Ni Metal-Organic Frameworks

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Cu/Ni-based metal-organic frameworks (CuNi@BTC) were prepared with benzene-1,3,5-tricarboxylate (H3BTC) as the organic ligand via the solvothermal method, and were then calcinated under N2 atmosphere to form C-coated CuNi catalysts (CuNi@C). TEM showed that carbon material on the surface of CuNi@C was a graphene-like structure. Then transfer hydrogenation of furfural catalyzed by CuNi@C was tested with alcohols as the hydrogen donor to optimize the Cu : Ni ratio, metal : organic ligand ratio, solvothermal synthesis, and calcination conditions. It was found that strong synergistic effect between Cu and Ni in the CuNi@C significantly enhanced the furfural transfer hydrogenation activity and raised the furfural selectivity. The reaction conditions of furfural transfer hydrogenation such as catalyst dosage, hydrogen donor, reaction temperature, and reaction time were studied. The catalytic mechanism for CTH of FF over CuNi@C catalyst was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Scheme 1.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. M. Besson, P. Gallezot, and C. Pinel, Chem. Rev. 114, 1827 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, Chem. Soc. Rev. 41, 8075 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. S. Xu, D. Pan, Y. Wu, X. Song, L. Gao, W. Li, L. Das, and G. Xiao, Fuel Process. Technol. 175, 90 (2018).

    Article  CAS  Google Scholar 

  4. G. Gomez Millan, Z. El Assal, K. Nieminen, S. Hellsten, J. Llorca, and H. Sixta, Fuel Process. Technol. 182, 56 (2018).

    Article  CAS  Google Scholar 

  5. J. P. Lange, E. van der Heide, J. van Buijtenen, and R. Price, ChemSusChem 5, 150 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. X. Li, P. Jia, and T. Wang, ACS Catal. 6, 7621 (2016).

    Article  CAS  Google Scholar 

  7. Q. Yuan, D. Zhang, L. v. Haandel, F. Ye, T. Xue, E. J. M. Hensen, and Y. Guan, J. Mol. Catal. A: Chem. 406, 58 (2015).

    Article  CAS  Google Scholar 

  8. T. Wang, A. Hu, G. Xu, C. Liu, H. Wang, and Y. Xia, Catal. Lett. 149, 1845 (2019).

    Article  CAS  Google Scholar 

  9. H. Du, X. Ma, P. Yan, M. Jiang, Z. Zhao, and Z. C. Zhang, Fuel Process. Technol. 193, 221 (2019).

    Article  CAS  Google Scholar 

  10. Y. Shi, Y. Yang, Y.-W. Li, and H. Jiao, ACS Catal. 6, 6790 (2016).

    Article  CAS  Google Scholar 

  11. J. F. Leal Silva, A. P. Mariano, and R. Maciel Filho, Biomass Bioenergy 119, 492 (2018).

    Article  CAS  Google Scholar 

  12. J. Wu, G. Gao, J. Li, P. Sun, X. Long, and F. Li, Appl. Catal. B 203, 227 (2017).

    Article  CAS  Google Scholar 

  13. G. Xu, C. Liu, A. Hu, Y. Xia, H. Wang, and X. Liu, Mol. Catal., 475 (2019).

  14. X. Jin, B. Yin, Q. Xia, T. Fang, J. Shen, L. Kuang, and C. Yang, ChemSusChem 12, 71 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Z. Zhang, Z. Pei, H. Chen, K. Chen, Z. Hou, X. Lu, P. Ouyang, and J. Fu, Ind. Eng. Chem. Res. 57, 4225 (2018).

    Article  CAS  Google Scholar 

  16. H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish, and X. Lu, Mol. Catal. 445, 94 (2018).

    Article  CAS  Google Scholar 

  17. P. Panagiotopoulou, N. Martin, and D. G. Vlachos, J. Mol. Catal. A: Chem. 392, 223 (2014).

    Article  CAS  Google Scholar 

  18. M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G. Vlachos, and B. Xu, ACS Catal. 5, 3988 (2015).

    Article  CAS  Google Scholar 

  19. P. Puthiaraj, K. Kim, and W.-S. Ahn, Catal. Today 324, 49 (2019).

    Article  CAS  Google Scholar 

  20. J. Li, J. L. Liu, H. J. Zhou, and Y. Fu, ChemSusChem 9, 1339 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. R. López-Asensio, J. A. Cecilia, C. P. Jiménez-Gómez, C. García-Sancho, R. Moreno-Tost, and P. Maireles-Torres, Appl. Catal. A 556, 1 (2018).

    Article  CAS  Google Scholar 

  22. F. Wang and Z. Zhang, ACS Sustain. Chem. Eng. 5, 942 (2016).

    Article  CAS  Google Scholar 

  23. V. Montes, J. F. Miñambres, A. N. Khalilov, M. Boutonnet, J. M. Marinas, F. J. Urbano, A. M. Maharramov, and A. Marinas, Catal. Today 306, 89 (2018).

    Article  CAS  Google Scholar 

  24. S. K. Singh, Asian J. Org. Chem. 7, 1901 (2018).

    Article  CAS  Google Scholar 

  25. J. Deng, P. Ren, D. Deng, and X. Bao, Angew. Chem., Int. Ed. Engl. 54, 2100 (2015).

    Article  CAS  Google Scholar 

  26. M. Xue, B. Li, S. Qiu, and B. Chen, Mater. Today 19, 503 (2016).

    Article  CAS  Google Scholar 

  27. S. Liu, S. Shinde, J. Pan, Y. Ma, Y. Yan, and G. Pan, Chem. Eng. J. 324, 216 (2017).

    Article  CAS  Google Scholar 

  28. P. Kumar, P. Kumar, L. M. Bharadwaj, A. K. Paul, and A. Deep, Inorg. Chem. Commun. 43, 114 (2014).

    Article  CAS  Google Scholar 

  29. L. M. Aguirre-Diaz, D. Reinares-Fisac, M. Iglesias, E. Gutiérrez-Puebla, F. Gándara, N. Snejko, and M. Á. Monge, Coord. Chem. Rev. 335, 1 (2017).

    Article  CAS  Google Scholar 

  30. L. Li, S. Zhu, R. Hao, J. J. Wang, E. C. Yang, and X. J. Zhao, Dalton Trans. 47, 12726 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. B. M. Jun, S. Kim, J. Heo, N. Her, M. Jang, C. M. Park, and Y. Yoon, Ultrason. Sonochem. 56, 174 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. W. Chaikittisilp, K. Ariga, and Y. Yamauchi, J. Mater. Chem. A 1, 14 (2013).

    Article  CAS  Google Scholar 

  33. A. R. Abbasi and M. Rizvandi, Ultrason. Sonochem. 40, 465 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. D. Chen, S. Zhao, Z. Qu, and N. Yan, Fuel 217, 297 (2018).

    Article  CAS  Google Scholar 

  35. L. Ai, T. Tian, and J. Jiang, ACS Sustain. Chem. Eng. 5, 4771 (2017).

    Article  CAS  Google Scholar 

  36. Y. Wang, S. Sang, W. Zhu, L. Gao, and G. Xiao, Chem. Eng. J. 299, 104 (2016).

    Article  CAS  Google Scholar 

  37. X. Wei, N. Li, and X. Zhang, Electrochim. Acta 264, 36 (2018).

    Article  CAS  Google Scholar 

  38. D. Chen, Z. Jiang, J. Geng, Q. Wang, and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007).

    Article  CAS  Google Scholar 

  39. Z.-Z. Wang, S.-R. Zhai, B. Zhai, and Q.-D. An, Eur. J. Inorg. Chem. 2015, 1692 (2015).

    Article  CAS  Google Scholar 

  40. Z. Xia, H. Liu, H. Lu, Z. Zhang, and Y. Chen, Appl. Surf. Sci. 422, 905 (2017).

    Article  CAS  Google Scholar 

  41. X. Xiao, S. Peng, C. Wang, D. Cheng, N. Li, Y. Dong, Q. Li, D. Wei, P. Liu, Z. Xie, D. Qu, and X. Li, J. Electroanal. Chem. 841, 94 (2019).

    Article  CAS  Google Scholar 

  42. X. Tang, H. Chen, L. Hu, W. Hao, Y. Sun, X. Zeng, L. Lin, and S. Liu, Appl. Catal. B 147, 827 (2014).

    Article  CAS  Google Scholar 

  43. L. Liu, H. Lou, and M. Chen, Appl. Catal. A 550, 1 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the financial supports from Heilongjiang Natural Science Foundation of China (E2018012) and Northeast Petroleum University (ts26180228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiqin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng Li, Jiang, S., Wang, Y. et al. Catalytic Transfer Hydrogenation of Furfural over CuNi@C Catalyst Prepared from Cu–Ni Metal-Organic Frameworks. Russ. J. Phys. Chem. 95, 68–79 (2021). https://doi.org/10.1134/S0036024421010143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421010143

Keywords:

Navigation