Catalytic Transfer Hydrogenation of Furfural over CuNi@C Catalyst Prepared from Cu–Ni Metal-Organic Frameworks

Abstract

Cu/Ni-based metal-organic frameworks (CuNi@BTC) were prepared with benzene-1,3,5-tricarboxylate (H3BTC) as the organic ligand via the solvothermal method, and were then calcinated under N2 atmosphere to form C-coated CuNi catalysts (CuNi@C). TEM showed that carbon material on the surface of CuNi@C was a graphene-like structure. Then transfer hydrogenation of furfural catalyzed by CuNi@C was tested with alcohols as the hydrogen donor to optimize the Cu : Ni ratio, metal : organic ligand ratio, solvothermal synthesis, and calcination conditions. It was found that strong synergistic effect between Cu and Ni in the CuNi@C significantly enhanced the furfural transfer hydrogenation activity and raised the furfural selectivity. The reaction conditions of furfural transfer hydrogenation such as catalyst dosage, hydrogen donor, reaction temperature, and reaction time were studied. The catalytic mechanism for CTH of FF over CuNi@C catalyst was discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Scheme 1.
Fig. 13.

REFERENCES

  1. 1

    M. Besson, P. Gallezot, and C. Pinel, Chem. Rev. 114, 1827 (2014).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    D. M. Alonso, S. G. Wettstein, and J. A. Dumesic, Chem. Soc. Rev. 41, 8075 (2012).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    S. Xu, D. Pan, Y. Wu, X. Song, L. Gao, W. Li, L. Das, and G. Xiao, Fuel Process. Technol. 175, 90 (2018).

    CAS  Article  Google Scholar 

  4. 4

    G. Gomez Millan, Z. El Assal, K. Nieminen, S. Hellsten, J. Llorca, and H. Sixta, Fuel Process. Technol. 182, 56 (2018).

    CAS  Article  Google Scholar 

  5. 5

    J. P. Lange, E. van der Heide, J. van Buijtenen, and R. Price, ChemSusChem 5, 150 (2012).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    X. Li, P. Jia, and T. Wang, ACS Catal. 6, 7621 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Q. Yuan, D. Zhang, L. v. Haandel, F. Ye, T. Xue, E. J. M. Hensen, and Y. Guan, J. Mol. Catal. A: Chem. 406, 58 (2015).

    CAS  Article  Google Scholar 

  8. 8

    T. Wang, A. Hu, G. Xu, C. Liu, H. Wang, and Y. Xia, Catal. Lett. 149, 1845 (2019).

    CAS  Article  Google Scholar 

  9. 9

    H. Du, X. Ma, P. Yan, M. Jiang, Z. Zhao, and Z. C. Zhang, Fuel Process. Technol. 193, 221 (2019).

    CAS  Article  Google Scholar 

  10. 10

    Y. Shi, Y. Yang, Y.-W. Li, and H. Jiao, ACS Catal. 6, 6790 (2016).

    CAS  Article  Google Scholar 

  11. 11

    J. F. Leal Silva, A. P. Mariano, and R. Maciel Filho, Biomass Bioenergy 119, 492 (2018).

    CAS  Article  Google Scholar 

  12. 12

    J. Wu, G. Gao, J. Li, P. Sun, X. Long, and F. Li, Appl. Catal. B 203, 227 (2017).

    CAS  Article  Google Scholar 

  13. 13

    G. Xu, C. Liu, A. Hu, Y. Xia, H. Wang, and X. Liu, Mol. Catal., 475 (2019).

  14. 14

    X. Jin, B. Yin, Q. Xia, T. Fang, J. Shen, L. Kuang, and C. Yang, ChemSusChem 12, 71 (2019).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Z. Zhang, Z. Pei, H. Chen, K. Chen, Z. Hou, X. Lu, P. Ouyang, and J. Fu, Ind. Eng. Chem. Res. 57, 4225 (2018).

    CAS  Article  Google Scholar 

  16. 16

    H. Chen, H. Ruan, X. Lu, J. Fu, T. Langrish, and X. Lu, Mol. Catal. 445, 94 (2018).

    CAS  Article  Google Scholar 

  17. 17

    P. Panagiotopoulou, N. Martin, and D. G. Vlachos, J. Mol. Catal. A: Chem. 392, 223 (2014).

    CAS  Article  Google Scholar 

  18. 18

    M. J. Gilkey, P. Panagiotopoulou, A. V. Mironenko, G. R. Jenness, D. G. Vlachos, and B. Xu, ACS Catal. 5, 3988 (2015).

    CAS  Article  Google Scholar 

  19. 19

    P. Puthiaraj, K. Kim, and W.-S. Ahn, Catal. Today 324, 49 (2019).

    CAS  Article  Google Scholar 

  20. 20

    J. Li, J. L. Liu, H. J. Zhou, and Y. Fu, ChemSusChem 9, 1339 (2016).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    R. López-Asensio, J. A. Cecilia, C. P. Jiménez-Gómez, C. García-Sancho, R. Moreno-Tost, and P. Maireles-Torres, Appl. Catal. A 556, 1 (2018).

    Article  CAS  Google Scholar 

  22. 22

    F. Wang and Z. Zhang, ACS Sustain. Chem. Eng. 5, 942 (2016).

    Article  CAS  Google Scholar 

  23. 23

    V. Montes, J. F. Miñambres, A. N. Khalilov, M. Boutonnet, J. M. Marinas, F. J. Urbano, A. M. Maharramov, and A. Marinas, Catal. Today 306, 89 (2018).

    CAS  Article  Google Scholar 

  24. 24

    S. K. Singh, Asian J. Org. Chem. 7, 1901 (2018).

    CAS  Article  Google Scholar 

  25. 25

    J. Deng, P. Ren, D. Deng, and X. Bao, Angew. Chem., Int. Ed. Engl. 54, 2100 (2015).

    CAS  Article  Google Scholar 

  26. 26

    M. Xue, B. Li, S. Qiu, and B. Chen, Mater. Today 19, 503 (2016).

    CAS  Article  Google Scholar 

  27. 27

    S. Liu, S. Shinde, J. Pan, Y. Ma, Y. Yan, and G. Pan, Chem. Eng. J. 324, 216 (2017).

    CAS  Article  Google Scholar 

  28. 28

    P. Kumar, P. Kumar, L. M. Bharadwaj, A. K. Paul, and A. Deep, Inorg. Chem. Commun. 43, 114 (2014).

    CAS  Article  Google Scholar 

  29. 29

    L. M. Aguirre-Diaz, D. Reinares-Fisac, M. Iglesias, E. Gutiérrez-Puebla, F. Gándara, N. Snejko, and M. Á. Monge, Coord. Chem. Rev. 335, 1 (2017).

    CAS  Article  Google Scholar 

  30. 30

    L. Li, S. Zhu, R. Hao, J. J. Wang, E. C. Yang, and X. J. Zhao, Dalton Trans. 47, 12726 (2018).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    B. M. Jun, S. Kim, J. Heo, N. Her, M. Jang, C. M. Park, and Y. Yoon, Ultrason. Sonochem. 56, 174 (2019).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    W. Chaikittisilp, K. Ariga, and Y. Yamauchi, J. Mater. Chem. A 1, 14 (2013).

    CAS  Article  Google Scholar 

  33. 33

    A. R. Abbasi and M. Rizvandi, Ultrason. Sonochem. 40, 465 (2018).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    D. Chen, S. Zhao, Z. Qu, and N. Yan, Fuel 217, 297 (2018).

    CAS  Article  Google Scholar 

  35. 35

    L. Ai, T. Tian, and J. Jiang, ACS Sustain. Chem. Eng. 5, 4771 (2017).

    CAS  Article  Google Scholar 

  36. 36

    Y. Wang, S. Sang, W. Zhu, L. Gao, and G. Xiao, Chem. Eng. J. 299, 104 (2016).

    CAS  Article  Google Scholar 

  37. 37

    X. Wei, N. Li, and X. Zhang, Electrochim. Acta 264, 36 (2018).

    CAS  Article  Google Scholar 

  38. 38

    D. Chen, Z. Jiang, J. Geng, Q. Wang, and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Z.-Z. Wang, S.-R. Zhai, B. Zhai, and Q.-D. An, Eur. J. Inorg. Chem. 2015, 1692 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Z. Xia, H. Liu, H. Lu, Z. Zhang, and Y. Chen, Appl. Surf. Sci. 422, 905 (2017).

    CAS  Article  Google Scholar 

  41. 41

    X. Xiao, S. Peng, C. Wang, D. Cheng, N. Li, Y. Dong, Q. Li, D. Wei, P. Liu, Z. Xie, D. Qu, and X. Li, J. Electroanal. Chem. 841, 94 (2019).

    CAS  Article  Google Scholar 

  42. 42

    X. Tang, H. Chen, L. Hu, W. Hao, Y. Sun, X. Zeng, L. Lin, and S. Liu, Appl. Catal. B 147, 827 (2014).

    CAS  Article  Google Scholar 

  43. 43

    L. Liu, H. Lou, and M. Chen, Appl. Catal. A 550, 1 (2018).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the financial supports from Heilongjiang Natural Science Foundation of China (E2018012) and Northeast Petroleum University (ts26180228).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cuiqin Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng Li, Jiang, S., Wang, Y. et al. Catalytic Transfer Hydrogenation of Furfural over CuNi@C Catalyst Prepared from Cu–Ni Metal-Organic Frameworks. Russ. J. Phys. Chem. 95, 68–79 (2021). https://doi.org/10.1134/S0036024421010143

Download citation

Keywords:

  • metal-organic frameworks
  • catalytic transfer hydrogenation
  • furfural
  • CuNi@C