Skip to main content
Log in

Change in the Crystallinity of Wheat Straw during Ozone Treatment

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new way of diffractometrically measuring the degree of crystallinity of substances by determining the rate of change in function I = f(2θ) over the range of scattering angles of a test sample’s diffractogram is used to study changes in the crystallinity of wheat straw during ozone treatment. It is shown that the crystallinity of a sample is inversely proportional to its content of lignin. No correlation is found between the crystallinity of the lignocellulosic substrate and its reactivity in the processes of enzymatic hydrolysis to sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Y. Sun and J. Cheng, Bioresour. Technol. 83, 1 (2002).

    Article  CAS  Google Scholar 

  2. R. Travaini, J. Martin-Juarez, A. Lorenzo-Hernando, and S. Bolado-Rodríguez, Bioresour. Technol. 199, 2 (2016).

    Article  CAS  Google Scholar 

  3. J. S. Wu, J. Upreti, and F. Ein-Mozaffari, Int. J. Hydrogen Energy 38, 10270 (2013).

    Article  CAS  Google Scholar 

  4. S. Bhattarai, D. Bottenus, C. F. Ivory, et al., Bioresour. Technol. 196, 78 (2015).

    Article  CAS  Google Scholar 

  5. V. S. Chang and M. T. Holtzapple, Appl. Biochem. Biotechnol. 84, 5 (2000).

    Article  Google Scholar 

  6. E. V. Novozhilov, I. G. Sinel’nikov, A. S. Aksenov, et al., Catal. Ind. 8, 95 (2016).

    Article  Google Scholar 

  7. L. T. Fan, Y. Lee, and D. H. Beardmore, Biotechnol. Bioeng. 22, 177 (1980).

    Article  CAS  Google Scholar 

  8. M. Hall, P. Bansal, J. H. Lee, et al., FEBS J. 277, 1571 (2010).

    Article  CAS  Google Scholar 

  9. Z. Yu, H. Jameel, H. Chang, and S. Park, Bioresour. Technol. 102, 9083 (2011).

    Article  CAS  Google Scholar 

  10. N. A. Mamleeva, G. E. Abrosimova, A. N. Kharlanov, and V. V. Lunin, Russ. J. Phys. Chem. A 87, 1102 (2013).

    Article  CAS  Google Scholar 

  11. M. Liu, X. Chen, and Xi. Tian, Int. J. Polym. Sci. 2018, 3452586 (2018). https://doi.org/10.1155/2018/3452586

    Article  CAS  Google Scholar 

  12. V. A. Demin, Extended Abstract of Doctoral Dissertation in Chemistry (Inst. Org. Chem. RAS, Ufa, 1997).

  13. N. A. Sekushin, L. S. Kocheva, and V. A. Demin, Khim. Rastit. Syr’ya, 59 (1999).

  14. D. G. Chukhchin, A. V. Malkov, I. V. Tyshkunova, L. V. Mayer, and E. V. Novozhilov, Crystallogr. Rep. 61, 371 (2016).

    Article  CAS  Google Scholar 

  15. E. M. Ben’ko, D. G. Chukhchin, and V. V. Lunin, Russ. J. Phys. Chem. A 91, 2092 (2017).

    Article  Google Scholar 

  16. F. Aldaeus and E. Sjöholm, Innventia Report No. IR 108 (2011).

  17. M. Ya. Ioelovich and G. P. Veveris, Khim. Drev. 5 (1987).

  18. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J. 29, 786 (1959).

    Article  CAS  Google Scholar 

  19. C. G. Vonk, J. Appl. Crystallogr. 6, 148 (1973).

    Article  CAS  Google Scholar 

  20. N. Terinte, R. Ibbett, and K. Schuster, Lenzinger Ber. 89, 118 (2011).

    CAS  Google Scholar 

  21. H. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).

    Article  CAS  Google Scholar 

  22. E. M. Ben’ko, O. R. Manisova, G. P. Murav’eva, and V. V. Lunin, Russ. J. Phys. Chem. A 87, 1097 (2013).

    Article  Google Scholar 

  23. C. Asada, C. Sasaki, T. Hirano, and Y. Nakamura, Bioresour. Technol. 182, 245 (2015).

    Article  CAS  Google Scholar 

  24. R. C. N. R. Corrales, F. M. T. Mendes, C. C. Perrone, et al., Biotechnol. Biofuels 5, 1 (2012).

    Article  Google Scholar 

  25. E. M. Ben’ko, D. G. Chukhchin, N. A. Mamleeva, et al., Russ. J. Phys. Chem. A 93 (2019, in press).

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 16-08-00876. It was performed on equipment purchased with the support of Moscow State University’s Development Program and the Arktika Core Facility Center (NArFU). Financing was provided by the RF Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Benko.

Additional information

Translated by M. Aladina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benko, E.M., Chuhchin, D.G., Malkov, A.V. et al. Change in the Crystallinity of Wheat Straw during Ozone Treatment. Russ. J. Phys. Chem. 94, 1149–1152 (2020). https://doi.org/10.1134/S0036024420060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420060059

Keywords:

Navigation