Skip to main content
Log in

Characteristics of the Phase Transition in Vanadium Dioxide Films Obtained via Chemical Vapor Deposition

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Changes in the characteristics of the semiconductor–metal phase transition in VO2 polycrystalline films obtained via chemical vapor deposition from vanadyl acetylacetonate vapor and oxygen with the temperature of synthesis varying from 373 to 473°C and the oxygen pressure varying from 25 to 90 sccm were studied. The critical temperature of the phase transition and the width of the hysteresis are calculated from the temperature dependences of the films’ coefficients of reflection. These dependences are determined using a special spectrophotometric system during the thermal cycling of the samples from room temperature to 100°C. The relationship between the phase transition characteristics and the phase composition and texture of the films is established. It is found that the critical temperature and the narrowest hysteresis correspond to films containing single monoclinic phase VO2(M1) with the preferential orientation (texture) of crystallites in the (011) plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).

    Article  CAS  Google Scholar 

  2. A. Tselev, V. Meunier, E. Strelcov, et al., ACS Nano 4, 4412 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. A. Tselev, I. A. Luk’yanchuk, I. N. Ivanov, et al., Nano Lett., No. 10, 4409 (2010).

  4. J. H. Park, J. M. Coy, T. S. Kasirga, et al., Nature (London, U.K.) 500, 431 (2013).

    Article  CAS  Google Scholar 

  5. V. N. Andreev, V. A. Klimov, M. E. Kompan, and B. A. Melekh, Phys. Solid State 56, 1857 (2014).

    Article  CAS  Google Scholar 

  6. S. Chen, H. Ma, Sh. Wang, et al., Thin Solid Films 497, 267 (2006).

    Article  CAS  Google Scholar 

  7. H. Jerominec, F. Picard, and D. Vincent, Opt. Eng. 32, 2092 (1993).

    Article  Google Scholar 

  8. M. Nakano, K. Shibuya, N. Ogawa, et al., Appl. Phys. Lett. 103,153503 (2013).

    Article  CAS  Google Scholar 

  9. J. Rensberg, S. Zhang, Y. Zhou, et al., Nano Lett. 16, 1050 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. O. B. Danilov, V. A. Klimov, O. P. Mikheeva, A. I. Sidorov, S. A. Tul’ski, E. B. Shadrin, and I. L. Yachnev, Tech. Phys. 48, 73 (2003).

    Article  CAS  Google Scholar 

  11. J. Zhou, Ya. Gao, Z. Zhang, et al., Sci. Rep. 3, 3029 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. S. S. Kanu and R. Binions, Proc. R. Soc., Ser. A 466, 19 (2009).

  13. K. Liu, C. Cheng, J. Suh, R. Tang-Kong, et al., Adv. Mater. 26, 1746 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. J. Cao, W. Fan, Q. Zhou, et al., J. Appl. Phys. 108, 083538 (2010).

    Article  CAS  Google Scholar 

  15. N. F. Mott, Metal-Insulator Transitions (Nauka, Moscow, 1979; Taylor Francis, London, 1974).

  16. D. A. Vinichenko, V. P. Zlomanov, V. A. Vasil’ev, D. S. Seregin, and O. Ya. Berezina, Inorg. Mater. 47, 279 (2011).

    Article  CAS  Google Scholar 

  17. S. J. Jiang, C. B. Ye, M. S. R. Khan, and C. G. Granqvist, Appl. Opt. 30, 847 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. D. H. Jung, H. S. So, K. H. Ko, et al., J. Kor. Phys. Soc. 69, 1787 (2016).

    Article  CAS  Google Scholar 

  19. M. B. Sahana, M. S. Dharmaprakash, and S. A. Shivashankar, J. Mater. Chem., No. 12, 333 (2002).

  20. P. Kiri, M. E. A. Warwick, I. Ridley, and R. Binions, Thin Solid Films 520, 1363 (2011).

    Article  CAS  Google Scholar 

  21. R. Binions, C. Piccirillo, and I. P. Parkin, Surf. Coat. Technol. 201, 9369 (2007).

    Article  CAS  Google Scholar 

  22. L. V. Yakovkina, S. V. Mutilin, V. Ya. Prinz, et al., J. Mater. Sci. 52, 4061 (2017).

    Article  CAS  Google Scholar 

  23. V. R. Shayapov, L. V. Yakovkina, N. V. Bulina, and N. A. Chernikova, J. Struct. Chem. 58, 1515 (2017).

    Article  CAS  Google Scholar 

  24. Powder Diffraction Files Inorganic Phases (Int. Centre for Diffract. Data, Pennsylvania, USA, 2010).

Download references

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Shayapov.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayapov, V.R., Yakovkina, L.V. Characteristics of the Phase Transition in Vanadium Dioxide Films Obtained via Chemical Vapor Deposition. Russ. J. Phys. Chem. 93, 1449–1454 (2019). https://doi.org/10.1134/S0036024419070252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419070252

Keywords:

Navigation