Skip to main content
Log in

Studying Hydrotalcite-Like Compounds Isomorphically Substituted with Iron and Cobalt via Inverse Temperature-Programmed Reduction

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The reducibility of multicomponent layered double hydrotalcite-like hydroxides containing Mg2+, Co2+, Al3+, and Fe3+ at different ratios of these metal cations and products of their thermal destruction in a hydrogen flow is studied via inverse temperature-programmed reduction (bTPD). It is shown that the temperature-programmed reduction profiles for layered double hydroxides (LDHs) contain signals corresponding not only to the reduction of iron and cobalt cations incorporated into the structure of brucite-like layers, but also ones corresponding to the reduction of cobalt and iron from the mixed oxides or spinel-like phases that appear due to the thermal destruction of LDHs occurring simultaneously with a reduction in iTPR measurements. Signals presumably corresponding to the reduction of residual nitrate anions are also revealed in iTPR profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Miyata, Clays Clay Miner. 28, 50 (1980).

    Article  CAS  Google Scholar 

  2. W. T. Reichle, Solid State Ionics 22, 135 (1986).

    Article  CAS  Google Scholar 

  3. F. Cavani, F. Trifiro, and A. Vaccari, Catal. Today 11, 173 (1991).

    Article  CAS  Google Scholar 

  4. D. G. Evans and R. C. T. Slade, Struct. Bond. 119, 1 (2006).

    CAS  Google Scholar 

  5. C. Forano, T. Hibino, F. Leroux, and C. Taviot-Gueho, Dev. Clay. Sci. 1, 1021 (2006).

    Article  CAS  Google Scholar 

  6. F. Li and X. Duan, Struct. Bond. 119, 193 (2006).

    Article  CAS  Google Scholar 

  7. G. Fan, F. Li, D. G. Evans, and X. Duan, Chem. Soc. Rev. 43, 7040 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. B. F. Sels, D. E. De Vos, and P. A. Jacobs, Catal. Rev. 43, 443 (2001).

    Article  CAS  Google Scholar 

  9. H. Zazoua, A. Saadi, K. Bachari, et al., Res. Chem. Intermed. 40, 931 (2014).

    Article  CAS  Google Scholar 

  10. N. N. Das and S. C. Srivastava, Bull. Mater. Sci. 25, 283 (2002).

    Article  CAS  Google Scholar 

  11. M. Gabrovska, R. Edreva-Kardjieva, and D. Crisan, React. Kinet. Mech. Catal. 105, 79 (2012).

    Article  CAS  Google Scholar 

  12. L. Dussault, J. C. Dupin, and C. Guimon, J. Catal. 251, 223 (2007).

    Article  CAS  Google Scholar 

  13. M. S. Aw, G. Dražić, P. Djinović, and A. Pintara, Catal. Sci. Technol. 6, 3797 (2016).

    Article  CAS  Google Scholar 

  14. O. V. Nestroinaya, I. G. Ryl’tsova, O. E. Lebedeva, B. M. Uralbekov, and O. I. Ponomarenko, Russ. J. Gen. Chem. 87, 163 (2017).

    Article  CAS  Google Scholar 

  15. F. Roessner and S. Schoenen, FRG Patent WO2011134934 (2011).

  16. A. G. Thomé, S. Peters, and F. Roessner, Catal. Commun. 97, 10 (2017).

    Article  CAS  Google Scholar 

  17. L. T. Bugaenko, S. M. Ryabykh, and A. L. Bugaenko, Mosc. Univ. Chem. Bull. 63, 303 (2008).

    Article  Google Scholar 

  18. Q. Fan, X. Li, and Z. Yang, Chem. Mater. 28, 6296 (2016).

    Article  CAS  Google Scholar 

  19. O. Lebedeva, D. Tichit, and B. Coq, Appl. Catal., A 183, 61 (1999).

  20. S. Ribet, D. Tichit, B. Coq, et al., J. Solid State Chem. 142, 382 (1999).

    Article  CAS  Google Scholar 

  21. X. Gao, J. Shen, Y. Hsia, and Y. Chen, J. Chem. Soc., Faraday Trans. 89, 1079 (1993).

    Article  CAS  Google Scholar 

  22. P. Arnoldy and J. A. Moulijn, J. Catal. 93, 38 (1985).

    Article  CAS  Google Scholar 

  23. D. Li, M. Lu, S. Xu, et al., Int. J. Hydrogen Energy 42, 5063 (2017).

    Article  CAS  Google Scholar 

  24. H.-Y. Lin, Y.-W. Chen, and C. Li, Thermochim. Acta 400, 61 (2003).

    Article  CAS  Google Scholar 

  25. T. J. Vulic, A. F. K. Reitzmann, and K. Lázár, Chem. Eng. J. 207–208, 913 (2012).

    Article  CAS  Google Scholar 

  26. E. Genty, J. Brunet, C. Poupin, et al., Catalysts 5, 851 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Center for Collective Use of “Technologies and Materials of the National Research University ‘BelSU’” for their help in our X-ray diffraction and elemental analyses, and to S. Stefan and J.-H. Bölte of Technical Chemistry Department 2 (Carl von Ossietzky Universität, Oldenburg, Germany) for their instructing us in inverse temperature-programmed reduction.

This work was performed as part of the Mikhail Lomonosov cooperative program of the German Academic Exchange Service and the Ministry of Education and Science of RF, State Task no. 11.711.2016/DAAD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Ryl’tsova.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryl’tsova, I.G., Roessner, F., Lebedeva, O.E. et al. Studying Hydrotalcite-Like Compounds Isomorphically Substituted with Iron and Cobalt via Inverse Temperature-Programmed Reduction. Russ. J. Phys. Chem. 93, 1038–1044 (2019). https://doi.org/10.1134/S003602441906027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441906027X

Keywords:

Navigation