Skip to main content
Log in

Adsorption of Common Transition Metal Atoms on Arsenene: A First-Principles Study

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Arsenene, a new group V two-dimensional (2D) semiconducting material, has attracted the attention of researchers due to its unusual properties. Furthermore, it has been found that these properties can be controlled by different types of engineering, particularly by chemical functionalization of the arsenene surface. Here, the effects of the arsenene surface functionalization by the common transition metals, including Ag, Al, Co, Cr, Mg, Mn, Ti, and V on the electronic properties of arsenene are presented. All the considered elements are found to be strong donors to arsenene. Moreover, Co-, Cr-, Mn-, V-adsorbed arsenene are spin-polarized, while Ag-, Al-, Mg-, and Ti-adsorbed arsenene are non-spin-polarized. The present work renders new ways to modulate electronic properties of arsenene, which is useful for its application in nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, and A. S. Khojin, Adv. Mater. 27, 1887 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, and H. S. J. van der Zant, 2D Mater. 1, 025001 (2014).

  3. P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gomez-Herrero, and F. Zamora, Adv. Mater. 28, 6332 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. J. Ji, S. Xiufeng, L. Jizi, Y. Zhong, H. Chengxue, Z. Shengli, S. Meng, L. Lei, W. Wenhui, N. Zhenhua, H. Yufeng, and Z. Haibo, Nat. Commun. 7, 13352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Angew. Chem., Int. Ed. 54, 3112 (2015).

    Article  CAS  Google Scholar 

  6. G. Wang, R. Pandey, and S. P. Karna, ACS Appl. Mater. Inter. 7, 11490 (2015).

    Article  CAS  Google Scholar 

  7. Z. Zhu and D. Tománek, Phys. Rev. Lett. 112, 176802 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. A. A. Kistanov, D. Kripalani, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, J. Mater. Chem. C 6, 4308 (2018).

    Article  CAS  Google Scholar 

  9. A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, 2D Mater. 4, 015010 (2017).

  10. A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, J. Phys. Chem. C 120, 6876 (2016).

    Article  CAS  Google Scholar 

  11. D. R. Kripalani, A. A. Kistanov, Y. Cai, M. Xue, and K. Zhou, Phys. Rev. B 98, 085410 (2018).

    Article  CAS  Google Scholar 

  12. J. W. Jiang and H. S. Park, J. Phys. D: Appl. Phys. 47, 385304 (2014).

    Article  CAS  Google Scholar 

  13. G. Yang, T. Ma, and X. Peng, Appl. Phys. Lett. 112, 241904 (2018).

    Article  CAS  Google Scholar 

  14. A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y. W. Zhang, J. Phys. Chem. C 120, 6876 (2016).

    Article  CAS  Google Scholar 

  15. J. Zhao, C. Liu, W. Guo, and J. Ma, Nanoscale 9, 7006 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. J. Guan, Z. Zhu, and D. Tománek, Phys. Rev. Lett. 113, 046804 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. B 90, 075429 (2014).

    Article  CAS  Google Scholar 

  18. P. Ares, J. J. Palacios, G. Abellan, J. Gómez-Herrero, and F. Zamora, Adv. Mater. 30, 1703771 (2018).

    Article  CAS  Google Scholar 

  19. Y. Cai, Q. Ke, G. Zhang, Y. P. Feng, V. B. Shenoy, and Y. W. Zhang, Adv. Funct. Mater. 25, 2230 (2015).

    Article  CAS  Google Scholar 

  20. C. Kamal and M. Ezawa, Phys. Rev. B 91, 085423 (2015).

    Article  CAS  Google Scholar 

  21. L. Kou, Y. Ma, X. Tan, T. Frauenheim, A. Du, and S. Smith, J. Phys. Chem. C 119, 6918 (2015).

    Article  CAS  Google Scholar 

  22. Z. Zhu, J. Guan, and D. Tománek, Phys. Rev. B 91, 161404 (2015).

    Article  CAS  Google Scholar 

  23. H. S. Tsai, S. W. Wang, C. H. Hsiao, C. H. Chen, H. Ouyang, Y. L. Chueh, H. C. Kuo, and J. H. Liang, Chem. Mater. 28, 425 (2016).

    Article  CAS  Google Scholar 

  24. C. Wang, Q. Xia, Y. Nie, M. Rahman, and G. Guo, AIP Adv. 6, 035204 (2016).

    Article  CAS  Google Scholar 

  25. D. Kecik, E. Durgun, and S. Ciraci, Phys. Rev. B 94, 205409 (2016).

    Article  Google Scholar 

  26. Y. J. Wang, K. G. Zhou, G. Yu, X. Zhong, and H. L. Zhang, Sci. Rep. 6, 24981 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Y. Wang, M. Ye, M. Wen, J. Li, X. Zhang, H. Zhang, Y. Guo, Y. Pan, L. Xiao, J. Liu, F. Pan, and J. Lu, ACS Appl. Mater. Interfaces 9, 29273 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Z. Chen, P. Darancet, L. Wang, A. C. Crowther, Y. Gao, C. R. Dean, T. Taniguchi, K. Watanabe, J. Hone, C. A. Marianetti, and L. E. Brus, ACS Nano 8, 2943 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. J. Xiao, M. Long, X. Li, Q. Zhang, H. Xu, and K. S. Chan, J. Phys.: Condens. Matter 26, 405302 (2014).

    Google Scholar 

  30. P. Srivastava, K. P. S. S. Hembram, H. Mizuseki, K. R. Lee, S. S. Han, and S. Kim, J. Phys. Chem. C 119, 6530 (2015).

    Article  CAS  Google Scholar 

  31. O. Ü. Aktürk, E. Aktürk, and S. Ciraci, Phys. Rev. B 93, 035450 (2016).

    Article  CAS  Google Scholar 

  32. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  33. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  34. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. R. F. W. Bader, Atoms in Molecules–A Quantum Theory (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  36. M. Y. Liu, Q. Y. Chen, Y. Huang, Z. Y. Li, C. Cao, and Y. He, Nanotechnology 29, 095203 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. M. Sun, S. Wang, Y. Du, J. Yu, and W. Tang, Appl. Surf. Sci. 389, 594 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.A. Kistanov acknowledges the financial support from the Russian Foundation for Basic Research (grant no. 17-02-00984). S.V. Dmitriev thanks the Russian Science Foundation for the financial support (grant no. 16-12-10175), and Е.А. Korznikova thanks the Russian Foundation for Basic Research (grant no. 18-32-20158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kistanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kistanov, A.A., Khadiullin, S.K., Dmitriev, S.V. et al. Adsorption of Common Transition Metal Atoms on Arsenene: A First-Principles Study. Russ. J. Phys. Chem. 93, 1088–1092 (2019). https://doi.org/10.1134/S0036024419060153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419060153

Navigation