Skip to main content
Log in

Quantum-Chemical Modeling of the Effect of Stretching Mechanical Activation of the Central С–С Bonds in Linear Polymers

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of mechanical activation by preliminarily stretching linear polymeric hydrocarbon molecules (e.g., polyethylene and polypropylene) on the energy force characteristics of the cleavage of central С‒С bonds in these molecules is studied via quantum-chemical modeling. It is found that during the deformation of С–С bonds, the molecular electronic subsystem is rearranged stepwise. It is shown that preliminary mechanical activation of polymeric molecules through their uniform stretching lowers the energy of dissociation of central С–С bonds in a polymeric material. This agrees qualitatively with experimental observations of the behavior of such polymeric macrosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. G. Avvakumov, Fundamental Principles of Mechanical Activation, Mechanosynthesis and Mechanochemical Technologies (Nauka, Novosibirsk, 2009) [in Russian].

    Google Scholar 

  2. V. E. Panin, V. A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  3. A. A. Askadskii, Polymer Deformation (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  4. V. E. Gul’, Structure and Strength of Polymers (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  5. G. M. Bartenev, Strength and Failure Mechanisms in Polymers (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  6. I. Narisava, Strength of Polymer Materials (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  7. A. M. Dubinskaya, Russ. Chem. Rev. 68, 637 (1999).

    Article  CAS  Google Scholar 

  8. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. D.01 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  9. R. Dennington and K. T. Millam, GaussView, Version 5 (J. Semichem Inc., Shawnee Mission KS, 2009).

    Google Scholar 

  10. G. A. Zhurko and D. A. Zhurko, Chemcraft. www.chemcraftprog.com. Accessed 2015.

  11. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO 6.0 Program Manual. NBO6 Website. http://nbo6.chem.wisc.edu. Accessed 2013.

  12. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, International Series of Monographs on Chemistry (Clarendon, Oxford, 1990).

    Google Scholar 

  13. T. A. Keith, AIMALL. http://aim.tkgristmill.com. Accessed 2015.

  14. I. Alkorta and J. Elguero, Chem. Phys. Lett. 425, 221 (2006).

    Article  CAS  Google Scholar 

  15. V. S. Yushchenko, T. P. Ponomareva, and E. D. Shchukin, J. Mater. Sci. 27, 1659 (1992).

    Article  CAS  Google Scholar 

  16. S. S. Batsanov, Inorg. Mater. 37, 871 (2001).

    Article  CAS  Google Scholar 

  17. A. A. Levin and S. P. Dolin, Koord. Khim. 5, 320 (1979).

    CAS  Google Scholar 

  18. A. A. Levin and P. N. D’yachkov, Electronic and Geometric Structure and Transformations of Heteroligand Molecules (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  19. Encyclopedia of Spectroscopy and Spectrometry, Ed. by J. Lindon, 2nd ed. (Academic, New York, 2010.

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2005; Pergamon, Oxford, 1980).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Savenko.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flyagina, I.S., Dolin, S.P., Malkin, A.I. et al. Quantum-Chemical Modeling of the Effect of Stretching Mechanical Activation of the Central С–С Bonds in Linear Polymers. Russ. J. Phys. Chem. 93, 1073–1081 (2019). https://doi.org/10.1134/S0036024419060104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419060104

Keywords:

Navigation