Skip to main content
Log in

Thermodynamics of the Acid–Base Equilibria of Glycyl–Glycyl–Glycine and the Formation of Its Complex with a Copper(II) Ion in Aqueous–Organic Solvents

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A summary is presented of original data on the thermodynamics of the formation of copper(II) ion complex with glycyl–glycyl–glycine, the acid–base equilibria of glycyl–glycyl–glycine in aqueous–organic solvents, and published sources that reflect the effect the concentration of the organic cosolvent has on the stability of the coordination compounds of amino acids and peptides with d metal ions and the enthalpies of their formation. Analysis of the solvation characteristics of the reagents shows that upon moving from water to water–ethanol and water–dimethylsulfoxide solvents, the copper(II) complexes with a glycyl–glycyl–glycine zwitterion and a glycinate ion are mainly strengthened through the resolvation of ligands, which is characteristic of the formation of ionic complexes of d metals in aqueous–organic solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. S. Dukhovich, M. B. Darkhovskii, E. N. Gorbatova, and V. K. Kurochkin, Molecular Recognition: Pharmacological Aspects (Meditsina, Moscow, 2004) [in Russian].

    Google Scholar 

  2. C. Koval and D. Margerum, Inorg. Chim. Acta 20, 2311 (1981).

    Article  CAS  Google Scholar 

  3. A. Brunetti, M. Lim, and G. Nancollas, J. Am. Chem. Soc. 206, 5120 (1968).

    Article  Google Scholar 

  4. M. Kim and A. Martell, J. Am. Chem. Soc. 88, 914 (1966).

    Article  CAS  PubMed  Google Scholar 

  5. G. Brookes and L. Pettit, J. Chem. Soc., Dalton Trans., No. 20, 2106 (1975).

  6. H. Sigel, R. Griesser, and B. Prijs, Naturforsch. 27, 353 (1972).

    Article  CAS  Google Scholar 

  7. O. Yamauchi, Y. Nakao, and A. Nakahara, Bull. Chem. Soc. Jpn. 46, 2119 (1973).

    Article  CAS  Google Scholar 

  8. A. Kaneda and A. Martell, J. Coord. Chem. 4, 137 (1975).

    Article  CAS  Google Scholar 

  9. N. V. Chernyavskaya, S. N. Gridchin, and S. A. Bychkova, Russ. J. Inorg. Chem. 60, 1163 (2015).

    Article  CAS  Google Scholar 

  10. G. G. Gorboletova, A. A. Metlin, and S. A. Bychkova, Russ. J. Phys. Chem. A 89, 793 (2015).

    Article  CAS  Google Scholar 

  11. V. S. Ilakin, V. G. Shtyrlin, A. V. Zakharov, and A. L. Kon’kin, Russ. J. Gen. Chem. 72, 349 (2002).

    Article  CAS  Google Scholar 

  12. V. G. Shtyrlin, E. L. Gogolashvili, and A. V. Zakharov, J. Chem. Soc., Dalton Trans., No. 7, 1293 (1989).

  13. S. Hadweh, J. Huet, M. Jouini, and G. Lapluye, J. Chim. Phys. Phys.-Chim. Biol. 89, 1973 (1992).

    Article  CAS  Google Scholar 

  14. V. V. Naumov, V. A. Isaeva, and V. A. Sharnin, Russ. J. Inorg. Chem. 56, 1139 (2011).

    Article  CAS  Google Scholar 

  15. V. A. Isaeva, S. F. Ledenkov, V. A. Sharnin, and V. A. Shormanov, Zh. Fiz. Khim. 67, 2202 (1993).

    CAS  Google Scholar 

  16. V. A. Isaeva, V. A. Sharnin, V. A. Shormanov, and I. A. Baranova, Russ. J. Phys. Chem. A 70, 1320 (1996).

    CAS  Google Scholar 

  17. V. V. Naumov, V. A. Isaeva, V. A. Sharnin, and E. N. Kuzina, Russ. J. Phys. Chem. A 85, 1752 (2011).

    Article  CAS  Google Scholar 

  18. V. A. Isaeva, V. V. Naumov, V. A. Sharnin, and Zh. F. Gesse, Russ. J. Phys. Chem. A 83, 396 (2009).

    Article  CAS  Google Scholar 

  19. Yu. Yu. Fadeev, V. A. Sharnin, and V. A. Shormanov, Russ. J. Inorg. Chem. 42, 1104 (1997).

    Google Scholar 

  20. S. F. Ledenkov, V. A. Shormanov, and V. A. Sharnin, Russ. J. Phys. Chem. A 70, 1642 (1996).

    Google Scholar 

  21. S. V. Mikheev and V. A. Sharnin, Russ. J. Phys. Chem. A 84, 153 (2010).

    Article  CAS  Google Scholar 

  22. V. A. Isaeva, V. V. Naumov, and V. A. Sharnin, Russ. J. Coord. Chem. 35, 868 (2009).

    Article  CAS  Google Scholar 

  23. V. V. Naumov, V. A. Isaeva, V. A. Sharnin, and E. N. Kuzina, Russ. J. Phys. Chem. A 85, 1752 (2011).

    Article  CAS  Google Scholar 

  24. V. A. Isaeva, V. A. Sharnin, and V. A. Shormanov, Russ. J. Coord. Chem. 25, 852 (1999).

    CAS  Google Scholar 

  25. V. A. Isaeva, V. V. Naumov, Zh. F. Gesse, and V. A. Sharnin, Russ. J. Coord. Chem. 34, 624 (2008).

    Article  CAS  Google Scholar 

  26. L. Pham Thi, T. R. Usacheva, T. M. Khrenova, and V. A. Sharnin, Russ. J. Phys. Chem. A 91, 1235 (2017).

    Article  Google Scholar 

  27. T. R. Usacheva, ThiL. Pham, K. I. Kuzmina, and V. A. Sharnin, J. Therm. Anal. Calorim. 130, 471 (2017).

    Article  CAS  Google Scholar 

  28. L. Pham Thi, T. R. Usacheva, N. V. Tukumova, N. E. Koryshev, T. M. Khrenova, and V. A. Sharnin, Russ. J. Phys. Chem. A 90, 1960 (2016).

    Article  CAS  Google Scholar 

  29. L. Pham Tkhi, T. R. Usacheva, N. V. Tukumova, N. E. Koryshev, T. M. Khrenova, and V. A. Sharnin, Russ. J. Phys. Chem. A 90, 344 (2016).

    Article  CAS  Google Scholar 

  30. L. Pham Thi, T. R. Usacheva, and V. A. Sharnin, Russ. J. Phys. Chem. A 90, 2387 (2016).

    Article  CAS  Google Scholar 

  31. V. G. Badelin, V. P. Barannikov, G. N. Tarasova, et al., Russ. J. Phys. Chem. A 86, 40 (2012).

    Article  CAS  Google Scholar 

  32. V. A. Borodin, E. V. Kozlovskii, and V. P. Vasil’ev, Zh. Neorg. Khim. 31, 10 (1986).

    CAS  Google Scholar 

  33. H. Sigel and R. B. Martin, Chem. Rev. 82, 385 (1982).

    Article  CAS  Google Scholar 

  34. H. Gao, X. Hu, and R. Lin, Thermochim. Acta 346, 1 (2000).

    Article  CAS  Google Scholar 

  35. E. N. Tsurko, T. M. Shihova, and N. V. Bondarev, J. Mol. Liq. 96–97, 425 (2002).

    Article  Google Scholar 

  36. G. A. Krestov, Thermodynamics of Ionic Processes in Solutions (Khimiya, Leningrad, 1984) [in Russian].

    Google Scholar 

  37. Y. Marcus, Pure Appl. Chem. 55, 977 (1983).

    Article  CAS  Google Scholar 

  38. C. Kalidas, G. Hefter, and Y. Marcus, Chem. Rev. 100, 819 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Y. Nozaki and C. Tanford, J. Biol. Chem. 246, 2211 (1971).

    CAS  PubMed  Google Scholar 

  40. T. R. Usacheva, K. I. Kuz’mina, L. Pham Thi, I. A. Kuz’mina, and V. A. Sharnin, Russ. J. Phys. Chem. A 88, 1357 (2014).

    Article  CAS  Google Scholar 

  41. V. I. Smirnov and V. G. Badelin, Thermochim. Acta 471, 97 (2008).

    Article  CAS  Google Scholar 

  42. A. V. Nevskii, V. A. Shormanov, G. A. Krestov, and E. S. Pirogova, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 2, 730 (1984).

    Google Scholar 

  43. E. M. Arnett, W. G. Bentrude, J. J. Burke, and P. McC. Duggleby, J. Am. Chem. Soc. 87, 1541 (1965).

    Article  CAS  Google Scholar 

  44. G. A. Krestov, Solutions of Nonelectrolytes in Liquids (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  45. Zh. F. Gesse, V. A. Isaeva, G. I. Repkin, and V. A. Sharnin, Russ. J. Phys. Chem. A 86, 53 (2012).

    Article  CAS  Google Scholar 

  46. V. A. Shormanov, G. I. Repkin, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 36, 561 (1983).

    Google Scholar 

  47. V. N. Afanas’ev, V. A. Shormanov, and G. A. Krestov, Tr. Ivanov. Khim.-Tekh. Inst. 13, 36 (1972).

    Google Scholar 

  48. Yu. S. Koryakin, V. A. Shormanov, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 22, 500 (1979).

    Google Scholar 

  49. A. V. Nevskii, V. A. Shormanov, and G. A. Krestov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 27, 156 (1984).

    Google Scholar 

  50. V. G. Badelin, V. P. Barannikov, G. N. Tarasova, et al., Russ. J. Phys. Chem. A 86, 40 (2012).

    Article  CAS  Google Scholar 

  51. A. Lewandowski, Electrochim. Acta 30, 311 (1985).

    Article  CAS  Google Scholar 

  52. A. Lewandowski, Electrochim. Acta 31, 59 (1986).

    Article  CAS  Google Scholar 

  53. S. V. Mikheev, V. A. Sharnin, and V. A. Shormanov, Russ. J. Phys. Chem. A 71, 84 (1997).

    Google Scholar 

  54. V. A. Sharnin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 48 (7), 44 (2005).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the shared resource center of the Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. R. Usacheva, Pham Thi Lan or V. A. Sharnin.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usacheva, T.R., Lan, P.T. & Sharnin, V.A. Thermodynamics of the Acid–Base Equilibria of Glycyl–Glycyl–Glycine and the Formation of Its Complex with a Copper(II) Ion in Aqueous–Organic Solvents. Russ. J. Phys. Chem. 93, 81–88 (2019). https://doi.org/10.1134/S0036024419010291

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419010291

Keywords:

Navigation