Skip to main content
Log in

Oxidative Dehydrogenation of Ethylbenzene to Styrene on a Mixed Mo–V–Te–NbОх Oxide Catalyst under Thermal and Microwave Heating

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A comparative study of the activity of a mixed oxide catalyst in the dehydrogenation of ethylbenzene (EB) to styrene at atmospheric pressure using О2 and СО2 as oxidants under conditions of conventional thermal and microwave heating is preformed. The dependences of conversion and selectivity on the composition of reaction mixtures are established. It is shown that replacing oxygen with CO2 leads to a substantial reduction in the conversion of EB with a simultaneous increase in the selectivity of the process. It is established that microwave heating with O2 used as an oxidizer provides increased efficiency of the process in the range of moderate (up to 420°С) temperatures. It is shown that the phase composition of the mixed oxide catalyst changes at higher temperatures. It is suggested this phenomenon is due to the appearance of hot points at the active reaction centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. http://newchemistry.ru/letter.php?n_id=6801&cat_ id=5&page_id=1.

  2. T. G. Alkhazov and A. E. Lisovskii, Oxidative Dehydrogenation of Hydrocarbons (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  3. G. V. Isagulyants, I. P. Belomestnykh, G. Forbek, and I. Perregaard, Ross. Khim. Zh., No. 3, 69 (2000).

  4. C. Nederlof et al., Appl. Catal., A 476, 204 (2014).

  5. V. Zarubina et al., J. Mol. Catal., A 381, 179 (2014).

  6. W. Oganowski, J. Hanuza, and L. Kepinski, Appl. Catal., A 171, 145 (1998).

  7. M. Kovacevic et al., Appl. Catal., A 505, 354 (2015).

  8. J. Ren, W. Y. Li, and K. C. Xie, Catal. Lett. 93, 31 (2004).

    Article  CAS  Google Scholar 

  9. F. Hongxia, F. Jie, L. Xiaohong, et al., Chem. Eng. Sci. 135, 403 (2015).

    Article  CAS  Google Scholar 

  10. S. Chen, Z. Qin, X. Xu, and J. Wang, Appl. Catal., A 302, 185 (2006).

  11. B. M. Reddy, P. Lakshmanan, S. Loridant, et al., J. Phys. Chem. B 110, 9140 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. E. D. Finashina, A. V. Kucherov, L. M. Kustov, et al., J. Adv. Oxid. Technol. 20, 165 (2016).

    Google Scholar 

  13. L. M. Kustov, E. D. Finashina, and A. L. Tarasov, Request on RF Patent No. 2017141368 (2017).

  14. A. L. Tarasov, E. D. Finashina, and L. M. Kustov, RF Patent No. 2523801 (2014).

  15. J. M. Lopez Nieto, P. Botella, M. Vazquez, and A. Garsia, US Patent No. 7319179 (2008).

  16. L. M. Kustov, A. V. Kucherov, T. N. Kucherova, et al., RF Patent No. 2358958 (2009).

  17. E. D. Finashina, A. V. Kucherov, and L. M. Kustov, Russ. J. Phys. Chem. A 87, 1983 (2013).

    Article  CAS  Google Scholar 

  18. L. M. Kustov and W. M. H. Sachtler, J. Mol. Catal. 71, 233 (1992).

    Article  CAS  Google Scholar 

  19. A. Yu. Khodakov, C. Williams, L. M. Kustov, and V. B. Kazansky, J. Chem. Soc., Faraday Trans. 89, 1393 (1993).

    Article  CAS  Google Scholar 

  20. B. Nigrovski, U. Zavyalova, P. Scholz, et al., Carbon 46, 1678 (2008).

    Article  CAS  Google Scholar 

  21. X. Zhang, D. O. Hayward, C. Lee, and D. M. P. Mingos, Appl. Catal. 33, 137 (2001).

    Article  Google Scholar 

  22. M. P. Vorob’eva, A. A. Greish, A. V. Ivanov, and L. M. Kustov, Appl. Catal.: Gen. 199, 257 (2000).

    Article  Google Scholar 

  23. V. P. Ananikov, E. G. Gordeev, M. P. Egorov, et al., Mendeleev Commun. 26, 365 (2016).

    Article  CAS  Google Scholar 

  24. E. A. Redina, A. A. Greish, I. V. Mishin, et al., Catal. Today 241, 246 (2015).

    Article  CAS  Google Scholar 

  25. L. M. Kustov, S. R. Al-Abed, J. Virkutyte, et al., Pure Appl. Chem. 86, 1141 (2014).

    Article  CAS  Google Scholar 

  26. O. A. Kirichenko, N. A. Davshan, E. A. Redina, et al., Chem. Eng. J. 292, 62 (2016).

    Article  CAS  Google Scholar 

  27. V. I. Isaeva, E. V. Belyaeva, A. N. Fitch, et al., Cryst. Growth Des. 13, 5305 (2013).

    Article  CAS  Google Scholar 

  28. V. I. Isaeva, M. I. Barkova, L. M. Kustov, et al., J. Mater. Chem. A 3, 7469 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 14-50-00126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Tarasov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, A.L., Finashina, E.D. Oxidative Dehydrogenation of Ethylbenzene to Styrene on a Mixed Mo–V–Te–NbОх Oxide Catalyst under Thermal and Microwave Heating. Russ. J. Phys. Chem. 93, 39–43 (2019). https://doi.org/10.1134/S003602441901028X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441901028X

Keywords:

Navigation