Skip to main content
Log in

Alkane Cyclization: A DFT Study on the Effect of Chlorinated γ-Alumina

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of a chlorinated γ-alumina (Cl/γ-alumina) surface on the cyclization and/or isomerization of hexane was elucidated based on the thermochemistry determined via first-principles density functional theory (DFT) simulations. The character of chlorine as a Lewis acid dopant on a γ-alumina surface was explored at the atomic scale. The most promising site for the chlorine atom on the (110) surface of γ-alumina resulted from direct adsorption. The binding energy between chlorine and the alumina surface was determined to be –2.11 eV. The binding energy was also measured by BSSE correction, and the result showed that this correction significantly affects the calculated binding energy of the Cl/γ-alumina system. Finally, we performed ab initio molecular dynamics simulations at the temperature of the reforming process (485°C) to determine the configuration of hexane, as a sample alkane, to detect of the role of the acidity of chlorine in the isomerization and/or cyclization process. The investigation of the effect of a chlorine atom on the γ-alumina showed that under vacuum conditions, the cyclization of hexane was strongly promoted over isomerization. This work exploits the power of recent developments in computational modeling and quantum mechanical calculations to elucidate hexane activation and its transformations over Cl/γ-alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A. Curtiss, G. A. Ballentine, J. W. Elam, S. Catillon-Mucherie, P. C. Redfern, F. Mehmood, and P. Zapol, Nat. Mater. 8, 213 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. J. Roithová and D. Schröder, Chem. Rev. 110, 1170 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. S. N. Lanin, A. A. Bannykh, E. V. Vlasenko, I. N. Krotova, O. N. Obrezkov, and M. I. Shilina, Russ. J. Phys. Chem. A 91, 36 (2017).

    Article  CAS  Google Scholar 

  4. Y. Wang, B. Xiang, H. Q. Yang, and C. W. Hu, ACS Omega 2, 3250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. Moreno-Castilla, M. V. Lopez-Ramon, and F. Carrasco-Marín, Carbon 38, 1995 (2000).

    Article  CAS  Google Scholar 

  6. C. Stampfl, Catal. Today 105, 17 (2005).

    Article  CAS  Google Scholar 

  7. K. S. Exner, J. Anton, T. Jacob, and H. Over, Electrochim. Acta 120, 460 (2014).

    Article  CAS  Google Scholar 

  8. Z. Lilli, Y. Wu, L. Zhang, Y. Wang, and M. Li, Vacuum 133, 1 (2016).

    Article  CAS  Google Scholar 

  9. M. Digne, P. Raybaud, P. Sautet, D. Guillaume, and H. Toulhoat, J. Am. Chem. Soc 130, 11030 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J. L. Le Loarer, J. P. Jolivet, and C. Froidefond, in Handbook of Porous Materials, Ed. by F. Schüth, K. Sing, and J. Weitkamp (Wiley–VCH, Weinheim, 2002).

    Google Scholar 

  11. B. C. Lippens and J. H. de Boer, Acta Crystallogr. 17, 1312 (1964).

    Article  CAS  Google Scholar 

  12. J. Hietala, A. Root, and P. Knuuttila, J. Catal. 150, 46 (1994).

    Article  CAS  Google Scholar 

  13. X. Krokidis, P. Raybaud, A.-E. Gobichon, B. Rebours, P. Euzen, and H. Toulhoat, J. Phys. Chem. B 105, 5121 (2001).

    Article  CAS  Google Scholar 

  14. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  Google Scholar 

  15. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    CAS  Google Scholar 

  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. A. Ferre-Vilaplana, J. Chem. Phys. 122, 104709 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. S. B. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  19. N. Sharifi, C. Falamaki, and M. G. Ahangari, Appl. Surf. Sci. 416, 390 (2017).

    Article  CAS  Google Scholar 

  20. J. G. Arteaga, J. A. Anderson, and C. H. Rochester, J. Catal. 187, 219 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghorbanzadeh Ahangari.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, N., Falamaki, C. & Ahangari, M.G. Alkane Cyclization: A DFT Study on the Effect of Chlorinated γ-Alumina. Russ. J. Phys. Chem. 93, 18–22 (2019). https://doi.org/10.1134/S0036024419010254

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419010254

Keywords:

Navigation