Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 968–975 | Cite as

Design of Copper and Titanium Dioxide Nanoparticles Doped with Reduced Graphene Oxide for Hydrogen Evolution by Water Splitting

  • Yuhao Yang
  • Wenhuan Huang
Physical Chemistry of Nanoclusters and Nanomaterials


TiO2-graphene (P25-GR, PG) nanocomposite was fabricated from P25 titania and graphite oxide by hydrothermal method, and then Cu nanoparticles (Cu NPs) were assembled in P25-GR composite (Cu- P25-GR, CPG) under microwave-assisted chemical reduction. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV–Vis absorption (UV–Vis) and Raman spectroscopies. Cu NPs were well dispersed on the surface of PG and are in metallic state. The ternary Cu-P25-GR (CPG) nanocomposites show an extended light absorption range and more efficient charge separation properties compared to binary P25-GR (PG) composite. Methylene blue photodegradation experiment proved that surface plasmon resonance (SPR) phenomenon had an effect on photoreaction efficiency. The corresponding hydrogen evolution rate for CPG prepared using 0.002 M Cu(NO3)2 solution was 10 times higher than with pure P25, and 2.3 times higher than with PG in the same test conditions. The improved photocatalytic performance can be attributed to the presence of GR in the prepared composite and to the SPR effect, leading to the longer lifetime of photogenerated electronhole pairs and faster interfacial charge transfer rate. We expect that our work would be useful for the further exploration of GR-based nanocomposites.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X.Y. Zhang, H.P. Li, X.L. Cui, and Y. Lin, J. Mater. Chem. 20, 2801 (2010).CrossRefGoogle Scholar
  2. 2.
    N. Zhang, Y. Zhang, and Y. J. Xu, Nanoscale 4, 5792 (2012).CrossRefGoogle Scholar
  3. 3.
    F. Schedin, A. K. Geim, S. V. Morozov, E. M. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).CrossRefGoogle Scholar
  4. 4.
    T. Takamura, K. Endo, L. Fu, Y. P. Wu, K. J. Lee, and T. Matsumoto, Electrochim. Acta 53, 1055 (2007).CrossRefGoogle Scholar
  5. 5.
    X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Stankovich, D. Dikin, G. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).CrossRefGoogle Scholar
  7. 7.
    D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. Dommett, G. Evmenenko, S. T. Nguyen, and R. S. Ruoff, Nature 448, 457 (2007).CrossRefGoogle Scholar
  8. 8.
    H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, and J. H. Li, ACS Nano 4, 380 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. Sun, Q. Wu, and G. Shi, Energy Environ. Sci. 4, 1113 (2014).CrossRefGoogle Scholar
  10. 10.
    Q. J. Xiang, B. Cheng, and J. G. Yu, Angew. Chem. Int. Ed. 54, 11350 (2015).CrossRefGoogle Scholar
  11. 11.
    D. Lang, T. Shen, and Q. Xiang, ChemCatChem 7, 943 (2015).CrossRefGoogle Scholar
  12. 12.
    B. M. Almeida, M. J. M. A. J. Bettini, J. E. Benedetti, and A. F. Nogueira, Appl. Surf. Sci. 324, 419 (2015).CrossRefGoogle Scholar
  13. 13.
    C. Hu, F. Chen, T. Lu, C. Lian, S. Zheng, Q. Hu, S. Duo, and R. Zhang, Appl. Surf. Sci. 317, 648 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. T. Liang, B. K. Vijayan, K. A. Gray, and M. C. Hersam, Nano Lett. 11, 2865 (2011).CrossRefGoogle Scholar
  15. 15.
    T. G. Xu, L. W. Zhang, H. Y. Cheng, and Y. F. Zhu, Appl. Catal., B 101, 382 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Q. Liu, M. Q. Yang, N. Zhang, and Y. J. Xu, J. Energ. Chem. 3, 145 (2014).CrossRefGoogle Scholar
  17. 17.
    L. Yuan, M. Q. Yang, and Y. J. Xu, J. Mater. Chem. A 2, 14401 (2014).CrossRefGoogle Scholar
  18. 18.
    Y. Wang, W. Wang, H. Mao, Y. Lu, J. Lu, J. Huang, Z. Ye, and B. Lu, ACS Appl. Mater. Interfaces 6, 12698 (2014).CrossRefGoogle Scholar
  19. 19.
    B. Qiu, M. Xing, and J. Zhang, J. Am. Chem. Soc. 136, 5852 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, and H. M. Cheng, Adv. Mater. 21, 1756 (2009).CrossRefGoogle Scholar
  21. 21.
    V. Lee, L. Whittaker, C. Jaye, K. M. Baroudi, D. A. Fischer, and S. Banerjee, Chem. Mater. 21, 3905 (2009).CrossRefGoogle Scholar
  22. 22.
    L. J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc. 131, 1043 (2008).CrossRefGoogle Scholar
  23. 23.
    X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Nat. Nanotechnol. 3, 538 (2008).CrossRefGoogle Scholar
  24. 24.
    Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, J. Am. Chem. Soc. 130, 5856 (2008).CrossRefGoogle Scholar
  25. 25.
    M. Q. Yang, N. Zhang, M. Pagliaro, and Y. J. Xu, Chem. Soc. Rev. 43, 8240 (2014).CrossRefGoogle Scholar
  26. 26.
    R. Adhikari, S. Malla, G. Gyawali, T. Sekino, and S. W. Lee, Mater. Res. Bull. 48, 3367 (2013).CrossRefGoogle Scholar
  27. 27.
    A. Liu, Q. Ren, M. Zhao, T. Xu, M. Yuan, T. Zhao, and W. Tang, J. Alloys Compd. 589, 218 (2014).CrossRefGoogle Scholar
  28. 28.
    A. Ramchiary and S. K. Samdarshi, Appl. Surf. Sci. 305, 33 (2014).CrossRefGoogle Scholar
  29. 29.
    W. Hou, W.H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, and S. B. Cronin, ACS Catal. 1, 929 (2011).CrossRefGoogle Scholar
  30. 30.
    L. Xiang, X. Zhao, C. Shang, and J. Yin, J. Colloid Interface Sci. 403, 22 (2013).CrossRefGoogle Scholar
  31. 31.
    Y. H. Yang, E. Z. Liu, H. Z. Dai, L. M. Kang, H. T. Wu, J. Fan, X. Y. Hu, and H. C. Liu, Int. J. Hydrogen Energy 39, 7664 (2014).CrossRefGoogle Scholar
  32. 32.
    F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, and H. Liu, Plasmonics 8, 501 (2013).CrossRefGoogle Scholar
  33. 33.
    E. Liu, L. Kang, Y. Yang, T. Sun, X. Hu, C. Zhu, H. Liu, Q. Wang, X. Li, and J. Fan, Nanotechnology 25, 165401 (2014).CrossRefGoogle Scholar
  34. 34.
    M. Zhou, J. Zhang, B. Cheng, and H. Yu, Int. J. Photoenergy 4, 532843 (2012).Google Scholar
  35. 35.
    S. T. Kochuveedu, D. P. Kim, and D. H. Kim, J. Phys. Chem. C 116, 2500 (2012)CrossRefGoogle Scholar
  36. 35a.
    J. S. Sekhon and S. S. Verma, Plasmonics 6, 311 (2011).CrossRefGoogle Scholar
  37. 36.
    G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. van Duyne, Nano Lett. 7, 1947 (2007).CrossRefGoogle Scholar
  38. 37.
    Y. J. Xu, Y. Zhang, and X. Z. Fu, J. Phys. Chem. C 114, 2669 (2010).CrossRefGoogle Scholar
  39. 38.
    O. Akhavan, M. Abdolahad, A. Esfandiar, and M. Mohatashamifar, J. Phys. Chem. C 114, 12955 (2010).CrossRefGoogle Scholar
  40. 39.
    W. J. Ren, Z. H. Ai, F. L. Jia, L. Z. Zhang, X. X. Fan, and Z. G. Zou, Appl. Catal. B 69, 138 (2007).CrossRefGoogle Scholar
  41. 40.
    G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz, and R. P. van Duyne, Nano Lett. 7, 1947 (2007).CrossRefGoogle Scholar
  42. 41.
    B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim, and J. S. Kim, J. Colloid Interface Sci. 311, 417 (2007).CrossRefGoogle Scholar
  43. 42.
    S. Sakthive and H. Kisch, Angew. Chem. Int. Ed. 42, 4908 (2003).CrossRefGoogle Scholar
  44. 43.
    Y. Yang, C. Chang, and H. Idriss, Appl. Catal., B 67, 217 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.The School of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi’anChina

Personalised recommendations