Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 840–846 | Cite as

Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

  • Na Wei
  • Wan-Tong Sun
  • Ying-Feng Meng
  • An-Qi Liu
  • Shou-Wei Zhou
  • Ping Guo
  • Qiang Fu
  • Xin Lv
Chemical Thermodynamics and Thermochemistry


Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.


methane hydrate molecular dynamics decomposition crystal structure multi-node 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. A. Kvenvolden, G. D. Ginsburg, and V. A. Soloviev, Geo-Mar. Lett. 1, 13 (1993).Google Scholar
  2. 2.
    T. K. Michael, B. Roland, W. E. Billups, and R. N. Lewis, J. Am. Chem. Soc. 30, 126 (2004).Google Scholar
  3. 3.
    H. C. Kim, P. R. Bishnoi, R. A. Heidemann, and S. S. H. Rizvi, Chem. Eng. Sci. 7, 42 (1987).Google Scholar
  4. 4.
    N. J. English, J. K. Johnson, C. E. Taylor, J. Chem. Phys. 123, 244503 (2005).CrossRefGoogle Scholar
  5. 5.
    E. N. Brodskaya and V. V. Sizov, Colloid. J. 5, 71 (2009).Google Scholar
  6. 6.
    E. M. Myshakin, H. Jiang, R. P. Warzinski, and K. D. Jordan, J. Phys. Chem. A 10, 113 (2009).Google Scholar
  7. 7.
    S. Alavi and J. A. Ripmeester, J. Chem. Phys. 14, 132 (2010).Google Scholar
  8. 8.
    Y. X. Qi, C. W. Tang, D. P. Liu, and G. Yang, Guangzhou Chem. Ind. 3, 23 (2010).Google Scholar
  9. 9.
    J. A. Ripmeester, S. A. Bagherzadeh, P. Englezos, and S. Alavi, Soc. Pet. Eng., 138112 (2010).Google Scholar
  10. 10.
    M. M. Conde and C. Vega, J. Chem. Phys. 133, 064507 (2010).CrossRefGoogle Scholar
  11. 11.
    S. A. Bagherzadeh, P. Englezos, S. Alavi, and J. A. Ripmeester, J. Chem. Thermodyn. 44, 13 (2012).CrossRefGoogle Scholar
  12. 12.
    V. S. Baghel, R. Kumar, and S. Roy, J. Phys. Chem. C. 23, 117 (2013).Google Scholar
  13. 13.
    K. F. Yan, X. S. Li, Z. Y. Chen, B. Li, and C. G. Xu, Mol. Simul. 4, 39 (2013).Google Scholar
  14. 14.
    S. Liang, L. Z. Yi, and D. Q. Liang, J. Phys. Chem. C 49, 118 (2014).Google Scholar
  15. 15.
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
  16. 16.
    I. Yoshio, N. Hiroki, A. Yuki, and S. Yusuke, Mol. Simul. 3, 36 (2010).Google Scholar
  17. 17.
    J. R. Errington and A. Z. Panagiotopoulos, J. Phys. Chem. B 38, 102 (1998).Google Scholar
  18. 18.
    A. R. Leach, Molecular Modelling: Principles and Applications (Pearson, London, 2001).Google Scholar
  19. 19.
    O. Masahiro and Y. X. Qi, JSME Int. J., Ser. B 4, 43 (2000).Google Scholar
  20. 20.
    D. H. Mei, Y. G. Li, and J. F. Lu, J. Chem. Ind. Eng. 1, 49 (1998).Google Scholar
  21. 21.
    E. N. Hamid and M. Hamid, J. Nat. Gas. Chem. 6, 20 (2011).Google Scholar
  22. 22.
    A. V. Dzyuba and I. S. Zektser, Water Res. 1, 40 (2013).Google Scholar
  23. 23.
    H. D. Zheng, F. D. Wu, B. Y. Wang, and Y. X. Wu, Comput. Theor. Chem. 1–3, 970 (2011).Google Scholar
  24. 24.
    Y. Liu, J. J. Zhao, and J. C. Xu, Comput. Theor. Chem. 7, 991 (2012).Google Scholar
  25. 25.
    S. Vchirawongkwin and V. Vchirawongkwin, Comput. Theor. Chem. 1–3, 974 (2011).Google Scholar
  26. 26.
    K. Nieszporeka, J. Nieszporekb, and M. Trojakc, Comput. Theor. Chem. 1, 1090 (2016).Google Scholar
  27. 27.
    Z. Jiang, K. Klyukin, and A. Vitaly, J. Chem. Phys. 11, 145 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Na Wei
    • 1
  • Wan-Tong Sun
    • 1
  • Ying-Feng Meng
    • 1
  • An-Qi Liu
    • 2
  • Shou-Wei Zhou
    • 3
  • Ping Guo
    • 1
  • Qiang Fu
    • 3
  • Xin Lv
    • 4
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina
  2. 2.Geological Explorations and Development InstituteChuan Qing Drilling Engineering Company LimitedChengduChina
  3. 3.CNOOCBeijingChina
  4. 4.CNOOC Research InstitutesBeijingChina

Personalised recommendations