Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 862–869 | Cite as

Selective Hydrogenation of Acetylene and Physicochemical Properties of Pd–Fe/Al2O3 Bimetallic Catalysts

  • V. D. Stytsenko
  • D. P. Mel’nikov
  • O. P. Tkachenko
  • E. V. Savel’eva
  • A. P. Semenov
  • L. M. Kustov
Chemical Kinetics and Catalysis
  • 25 Downloads

Abstract

The selective hydrogenation of acetylene on Pd–Fe/Al2O3 catalysts prepared by decomposition of ferrocene on reduced Pd/Al2O3 was studied. The effect of the conditions of treatment of the Pd–ferrocene/ Al2O3 precursor on the catalyst activity and selectivity was investigated, and the optimum conditions were determined at which the Pd–Fe/Al2O3 catalyst has higher selectivity than Pd/Al2O3 without any loss of activity.

Keywords

selective hydrogenation acetylene Pd–Fe/Al2O3 decomposition of ferrocene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Handbook of Heterogeneous Catalysts (VCH, Weinheim, 1997), Vol.5.Google Scholar
  2. 2.
    V. D. Stytsenko and D. P. Mel’nikov, Russ. J. Phys. Chem. A 90, 932 (2016).CrossRefGoogle Scholar
  3. 3.
    Q. Zhang, J. Li, X. Liu, and Q. Zhu, Appl. Catal., A 197, 221 (2000).CrossRefGoogle Scholar
  4. 4.
    D. C. Huang, K. H. Chang, W. F. Pong, et al., J. Catal. Lett. 53, 155 (1998).CrossRefGoogle Scholar
  5. 5.
    Yunya Zhang, Weijian Diao, C. T. Williams, and J. R. Monnier, Appl. Catal., A 469, 419 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Kuhn, M. Lucas, and P. Claus, Ind. Eng. Chem. Res. 54, 1 (2016).Google Scholar
  7. 7.
    J. Osswald, R. Giedigkeit, R. E. Jentoft, et al., J. Catal. 258, 210 (2008).CrossRefGoogle Scholar
  8. 8.
    F. Studt, F. Abild-Pedersen, T. Bligaard, et al., Science 320 (5881), 1320 (2008).CrossRefGoogle Scholar
  9. 9.
    F. Studt, F. Abild-Pedersen, T. Bligaard, et al., Angew. Chem. Int. Ed. 47, 9299 (2008).CrossRefGoogle Scholar
  10. 10.
    J. H. Kang, E. W. Shin, W. J. Kim, J. D. Park, and S. H. Moon, J. Catal. 208, 310 (2002).CrossRefGoogle Scholar
  11. 11.
    I. S. Mashkovskii, O. P. Tkachenko, G. N. Baeva, and A. Yu. Stakheev, Kinet. Catal. 50, 768 (2009).CrossRefGoogle Scholar
  12. 12.
    Xian Pei Guang, Yan Liu Xiao, and Xiaofeng Yang, ACS Catal. 7, 1491 (2017).CrossRefGoogle Scholar
  13. 13.
    A. A. Solov’yanov, V. V. Kharatyan, and V. D. Stytsenko, Khim. Tekhnol., No. 6, 123 (2010).Google Scholar
  14. 14.
    E. W. Shin, C. H. Choi, K. S. Chang, Y. H. Na, and S. H. Moon, Catal.Today 44, 137 (1998).CrossRefGoogle Scholar
  15. 15.
    K. Lázár, M. Nimz, and G. Lietz, Hyperfine Interact. 41, 657 (1988).CrossRefGoogle Scholar
  16. 16.
    M. P. Felicissimo, O. N. Martyanov, T. Risse, and H.-J. Freund, Surf. Sci. 601, 2105 (2007).CrossRefGoogle Scholar
  17. 17.
    L. M. R. Gavidia, D. Sebastián, E. Pastor, A. S. Aricò, and V. Baglio, Materials 10, 580 (2017).CrossRefGoogle Scholar
  18. 18.
    B. Gumina, E. Paone, and F. Mauriello, Catalysts 7, 78 (2017).CrossRefGoogle Scholar
  19. 19.
    F. Boccuzzi, E. Guglielminotti, F. Pinna, and M. Signoretto, J. Chem. Soc., Faraday Trans. 91, 3237 (1995).CrossRefGoogle Scholar
  20. 20.
    Y. Hong, H. Zhang, J. Sun, et al., ACS Catal. 4, 3335 (2014).CrossRefGoogle Scholar
  21. 21.
    N. Lingaiah, P. S. Sai Prasad, P. P. Kanta Rao, et al., Appl. Catal., A 213, 189 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. D. Stytsenko
    • 1
  • D. P. Mel’nikov
    • 1
  • O. P. Tkachenko
    • 2
  • E. V. Savel’eva
    • 1
  • A. P. Semenov
    • 1
  • L. M. Kustov
    • 2
  1. 1.Gubkin Russian State University of Oil and GasMoscowRussia
  2. 2.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations