Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 948–954 | Cite as

Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

  • N. O. Shaparenko
  • D. I. Beketova
  • M. G. Demidova
  • A. I. Bulavchenko
Physical Chemistry of Nanoclusters and Nanomaterials
  • 15 Downloads

Abstract

The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane–chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2–3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

Keywords

entropy titanium dioxide nanoparticles microemulsions electrophoretic concentration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. D. Grayfer, MN. Kozlova, and V. E. Fedorov, Adv. Colloid Interface Sci. 245, 40 (2017). doi 10.1016/j.cis.2017.04.014CrossRefGoogle Scholar
  2. 2.
    S. B. Brichkin and V. F. Razumov, Russ. Chem. Rev. 85, 1297 (2016).CrossRefGoogle Scholar
  3. 3.
    A.-M. A. Abdel-Wahab and A. E.-A. M. Gaber, Photochem. Photobiol. A 114, 213 (1998).CrossRefGoogle Scholar
  4. 4.
    B. O’Regan and M. Gratzel, Nature 353 (24), 737 (1991).CrossRefGoogle Scholar
  5. 5.
    S. Ito, T. N. Murakashi, P. Comte, et al., Thin Solid Films 516, 4613 (2008).CrossRefGoogle Scholar
  6. 6.
    D. A. Afanasyev, N. Kh. Ibrayev, T. M. Serikov, and A. K. Zeinidenov, Russ. J. Phys. Chem. A 90, 833 (2016).CrossRefGoogle Scholar
  7. 7.
    B. Kim, D. Kim, D. Cho, and S. Cho, Chemosphere 52, 277 (2003).CrossRefGoogle Scholar
  8. 8.
    H. Noritomi, Y. Umezawa, S. Miyagawa, and S. Kato, Adv. Chem. Eng. Sci. 1, 299 (2011).CrossRefGoogle Scholar
  9. 9.
    Y. D. Sosa, M. Rabelero, M. E. Treviño, et al., J. Nanomater. 2010, 392572 (2010). doi 10.1155/2010/392572CrossRefGoogle Scholar
  10. 10.
    J. B. Miller, J. M. Harris, and E. K. Hobbie, Langmuir 30, 7936 (2014).CrossRefGoogle Scholar
  11. 11.
    Ch. Urata, Yu. Aoyama, A. Tonegawa, et al., Chem. Commun. 34, 5094 (2009).CrossRefGoogle Scholar
  12. 12.
    J. C. Trefry, J. L. Monahan, K. M. Weaver, et al., J. Am. Chem. Soc. 132, 10970 (2010).CrossRefGoogle Scholar
  13. 13.
    C. Wallar, T. Zhang, K. Shi, and I. Zhitomirsky, Colloid Surf., A 500, 195 (2016).CrossRefGoogle Scholar
  14. 14.
    A. I. Bulavchenko and D. N. Pletnev, J. Phys. Chem. C 112, 16365 (2008).CrossRefGoogle Scholar
  15. 15.
    A. I. Bulavchenko and P. S. Popovetsky, Langmuir 26, 736 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Eastoe, M. J. Hollamby, and L. Hudson, Adv. Colloid Interface Sci. 128–130, 5 (2006).CrossRefGoogle Scholar
  17. 17.
    F. Beunis, F. Strubbe, K. Neyts, and A. R. M. Verschueren, Appl. Phys. Lett. 90, 182103 (2007).CrossRefGoogle Scholar
  18. 18.
    D. P. J. Barz, M. J. Vogel, and P. H. Steen, Langmuir 26, 5 (2010).CrossRefGoogle Scholar
  19. 19.
    A. I. Bulavchenko, N. O. Shaparenko, and M. G. Demidova, Electrophoresis 38, 1678 (2017). doi 10.1002/elps.201600542CrossRefGoogle Scholar
  20. 20.
    A. I. Bulavchenko, M. G. Demidova, and D. I. Beketova, Cryst. Growth Des. 13, 485 (2013).CrossRefGoogle Scholar
  21. 21.
    P. D. Moran and J. R. Bartlett, J. Sol-Gel Sci. Technol. 15, 251 (1999).CrossRefGoogle Scholar
  22. 22.
    S. Kuo and F. J. Osterle, J. Colloid Interface Sci. 25, 421 (1967).CrossRefGoogle Scholar
  23. 23.
    P. S. Popovetskiy, A. T. Arymbaeva, and A. I. Bulavchenko, Colloid. J. 79, 106 (2017).CrossRefGoogle Scholar
  24. 24.
    V. A. Tolpekin, D. Ende, M. H. G. Duits, and J. Mellema, Langmuir 20, 8460 (2004).CrossRefGoogle Scholar
  25. 25.
    Q. Guo, V. Singh, and S. H. Behrens, Langmuir 26, 3203 (2010).CrossRefGoogle Scholar
  26. 26.
    D. P. J. Barz, M. J. Vogel, and P. H. Steen, Langmuir 26, 3126 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. O. Shaparenko
    • 1
  • D. I. Beketova
    • 1
  • M. G. Demidova
    • 1
  • A. I. Bulavchenko
    • 1
  1. 1.Nikolaev Institute of Inorganic ChemistryRussian Academy of Sciences, Siberian BranchNovosibirskRussia

Personalised recommendations