Skip to main content
Log in

Calculating Equilibrium Constants in the SnCl2–H2O–NaOH System According to Potentiometric Titration Data

  • Colloidal Chemistry and Electrochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The potentiometric titration of tin chloride SnCl2 is performed in the concentration range of 0.00009–1.1 mol/L with a solution of sodium hydroxide NaOH. According to potentiometric titration data based on modeling equilibria in the SnCl2–H2O–NaOH system, basic equations are generated for the main processes, and instability constants are calculated for the resulting hydroxo complexes and equilibrium constants of low-soluble tin(II) compounds. The data will be of interest for specialists in the field of theory of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Yu. Betin, V. I. Bobrinev, N. N. Evtikhiev, et al., Appl. Opt. 52, 8142 (2013).

    Article  Google Scholar 

  2. V. R. Solanki, R. J. Parmar, R. J. Pathak, and M. D. Parmar, in Proc. of the International Conference on Functional Oxides and Nanomaterials, AIP Conf. Proc. 1837, 040019–1 (2017).

    Google Scholar 

  3. M. S. Mahdi, K. Ibrahim, A. Hmood, et al., RSC Adv. 116, 114980 (2016).

    Article  Google Scholar 

  4. D. Avellaneda, G. Delgado, M. T. S. Nair, and P. K. Nair, Thin Solid Films 515, 5771 (2007).

    Article  CAS  Google Scholar 

  5. Z. Zainal, S. Nagalingam, A. Kassim, et al., Solar Energy Mater. Solar Cells 81, 261 (2004).

    Article  CAS  Google Scholar 

  6. K. Zweibel, Solar Energy Mater. Solar Cells 63, 375 (2000).

    Article  CAS  Google Scholar 

  7. N. Lindgren, M. Larsson, and S. Lindquist, Solar Energy Mater. Solar Cells 73, 377 (2002).

    Article  CAS  Google Scholar 

  8. J. B. Johnson, H. Jones, B. S. Latham, et al., Semicond. Sci. Technol. 14, 501 (1999).

    Article  CAS  Google Scholar 

  9. T. Jiang, G. A. Ozin, A. Verma, and R. L. Bedard, J. Mater. Chem. 8, 1649 (1998).

    Article  CAS  Google Scholar 

  10. M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).

    Article  CAS  Google Scholar 

  11. S. A. Pianaro, P. R. Bueno, E. Longo, and J. A. Varela, J. Mater. Sci. Lett. 14, 692 (1995).

    Article  CAS  Google Scholar 

  12. V. E. Bochenkov and G. B. Sergeev, Russ. Chem. Rev. 76, 1013 (2007).

    Article  CAS  Google Scholar 

  13. A. Ammari, B. Bellal, N. Zebbar, et al., Thin Solid Films 632, 66 (2017).

    Article  CAS  Google Scholar 

  14. S. A. Bashkirov, V. F. Gremenok, and V. A. Ivanov, Semiconductors 45, 749 (2011).

    Article  CAS  Google Scholar 

  15. K. T. R. Reddy, N. K. Reddy, and R. W. Miles, Solar Energy Mater. Solar Cells 90, 3041 (2006).

    Article  Google Scholar 

  16. M. Sharon and K. Basavaswaran, Solar Cells 25, 97 (1988).

    Article  CAS  Google Scholar 

  17. M. Gunasekaran and M. Ichimura, Solar Energy Mater. Solar Cells 91, 774 (2007).

    Article  CAS  Google Scholar 

  18. L. S. Parshina, O. D. Khramova, O. A. Novodvorsky, A. A. Lotin, I. A. Petukhov, F. N. Putilin, and K. D. Shcherbachev, Semiconductors 51, 407 (2017).

    Article  CAS  Google Scholar 

  19. C. Cifuentes, M. Botero, E. Romero, et al., Brazil. J. Phys. 36 (3B), 1046 (2006).

    Article  CAS  Google Scholar 

  20. M. Devika, N. K. Reddy, F. Patolsky, and K. R. Gunasekhar, J. Appl. Phys. 104, 124503 (2008).

    Article  Google Scholar 

  21. S. A. Bashkirov, V. F. Gremenok, V. A. Ivanov, and V. V. Shevtsova, Phys. Solid State 54, 2497 (2012).

    Article  CAS  Google Scholar 

  22. B. Stjerna, E. Olsson, and C. G. Granqvist, J. Appl. Phys. 76, 3797 (1994).

    Article  CAS  Google Scholar 

  23. J. Park, M. Song, W. M. Jung, et al., Bull. Korean Chem. Soc. 33, 3383 (2012).

    Article  CAS  Google Scholar 

  24. P. Sinsermsuksakul, K. Hartman, S. B. Kim, et al., Appl. Phys. Lett. 102, 053901 (2013).

    Article  Google Scholar 

  25. V. S. Popov, V. G. Sevast’yanov, and N. T. Kuznetsov, Kompoz. Nanostrukt., No. 1, 33 (2012).

    Google Scholar 

  26. L. N. Maskaeva, E. A. Fedorova, V. F. Markov, et al., Butler. Soobshch. 37 (2), 1 (2014).

    Google Scholar 

  27. L. N. Maskaeva, S. S. Tulenin, A. A. Timina, and V. F. Markov, Butler. Soobshch. 45 (3), 72 (2016).

    Google Scholar 

  28. S. S. Tulenin, A. A. Timina, L. N. Maskaeva, and V. F. Markov, Russ. J. Appl. Chem. 90, 91 (2017).

    Article  CAS  Google Scholar 

  29. L. P. Joshi, L. Risal, and S. P. Shrestha, J. Nepal Phys. Soc. 3, 1 (2015).

    Article  CAS  Google Scholar 

  30. S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande, J. Semicond. 37, 053001(2016).

    Article  Google Scholar 

  31. O. D. Nnanyere, J. Nat. Sci. Res. 5, 124 (2015).

    Google Scholar 

  32. M. Safonova, E. Mellikov, V. Mikli, et al., Adv. Mater. Res. 1117, 183 (2015).

    Article  Google Scholar 

  33. T. N. Fetisova, V. R. Mirolyubov, and S. F. Katyshev, Russ. J. Gen. Chem. 77, 1643 (2007).

    Article  CAS  Google Scholar 

  34. V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, The Hydrolysis of Metal Ions in Diluted Solutions (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  35. V. B. Spivakovskii, Analytical Chemistry of Tin (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  36. R. M. Cigala, F. Crea, C. de Stefano, et al., Monatsh. Chem. 144, 761 (2013).

    Article  CAS  Google Scholar 

  37. O. V. Reva and T. N. Vorob’eva, Russ. J. Appl. Chem. 75, 700 (2002).

    Article  CAS  Google Scholar 

  38. F. Séby, M. Potin-Gautier, E. Giffaut, and O. F. X. Donard, Geochim. Cosmochim. Acta 65, 3041 (2001).

    Article  Google Scholar 

  39. Yu. Yu. Lur’e, Handbook of Analytical Chemistry (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  40. R. A. Yusupov and S. A. Bakhteev, Russ. J. Phys Chem. A 83, 2188 (2009).

    Article  CAS  Google Scholar 

  41. J. N. Butler, Ionic Equilibrium: A Mathematical Approach (Addison-Wesley, Reading, MA, 1964).

    Google Scholar 

  42. M. Pettine, F. J. Millero, and G. Macchi, Anal. Chem. 53, 1039 (1981).

    Article  CAS  Google Scholar 

  43. R. M. Cigala, F. Crea, and C. de Stefano, Geochim. Cosmochim. Acta 87, 1 (2012).

    Article  CAS  Google Scholar 

  44. T. Z. Din’, R. A. Yusupov, and S. A. Bakhteev, Vestn. Kazan. Tekhnol. Univ. 15 (15), 49 (2012).

    Google Scholar 

  45. T. Z. Din’, S. A. Bakhteev, and R. A. Yusupov, Vestn. Kazan. Tekhnol. Univ. 16 (17), 47 (2013).

    Google Scholar 

  46. T. Z. Din’, S. A. Bakhteev, and R. A. Yusupov, Vestn. Kazan. Tekhnol. Univ. 16 (4), 92 (2013).

    Google Scholar 

  47. R. A. Yusupov, S. A. Bakhteev, and S. G. Smerdova, Russ. J. Phys. Chem. A 84, 1263 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Fedorova.

Additional information

Original Russian Text © L.N. Maskaeva, E.A. Fedorova, R.A. Yusupov, V.F. Markov, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 5, pp. 831–837.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Fedorova, E.A., Yusupov, R.A. et al. Calculating Equilibrium Constants in the SnCl2–H2O–NaOH System According to Potentiometric Titration Data. Russ. J. Phys. Chem. 92, 1025–1031 (2018). https://doi.org/10.1134/S0036024418050230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418050230

Keywords

Navigation