Advertisement

Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 1025–1031 | Cite as

Calculating Equilibrium Constants in the SnCl2–H2O–NaOH System According to Potentiometric Titration Data

  • L. N. Maskaeva
  • E. A. Fedorova
  • R. A. Yusupov
  • V. F. Markov
Colloidal Chemistry and Electrochemistry
  • 18 Downloads

Abstract

The potentiometric titration of tin chloride SnCl2 is performed in the concentration range of 0.00009–1.1 mol/L with a solution of sodium hydroxide NaOH. According to potentiometric titration data based on modeling equilibria in the SnCl2–H2O–NaOH system, basic equations are generated for the main processes, and instability constants are calculated for the resulting hydroxo complexes and equilibrium constants of low-soluble tin(II) compounds. The data will be of interest for specialists in the field of theory of solutions.

Keywords

tin(II) chalcogenides complexation hydrolysis ionic equilibria boundary conditions of formation potentiometric titration thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yu. Betin, V. I. Bobrinev, N. N. Evtikhiev, et al., Appl. Opt. 52, 8142 (2013).CrossRefGoogle Scholar
  2. 2.
    V. R. Solanki, R. J. Parmar, R. J. Pathak, and M. D. Parmar, in Proc. of the International Conference on Functional Oxides and Nanomaterials, AIP Conf. Proc. 1837, 040019–1 (2017).Google Scholar
  3. 3.
    M. S. Mahdi, K. Ibrahim, A. Hmood, et al., RSC Adv. 116, 114980 (2016).CrossRefGoogle Scholar
  4. 4.
    D. Avellaneda, G. Delgado, M. T. S. Nair, and P. K. Nair, Thin Solid Films 515, 5771 (2007).CrossRefGoogle Scholar
  5. 5.
    Z. Zainal, S. Nagalingam, A. Kassim, et al., Solar Energy Mater. Solar Cells 81, 261 (2004).CrossRefGoogle Scholar
  6. 6.
    K. Zweibel, Solar Energy Mater. Solar Cells 63, 375 (2000).CrossRefGoogle Scholar
  7. 7.
    N. Lindgren, M. Larsson, and S. Lindquist, Solar Energy Mater. Solar Cells 73, 377 (2002).CrossRefGoogle Scholar
  8. 8.
    J. B. Johnson, H. Jones, B. S. Latham, et al., Semicond. Sci. Technol. 14, 501 (1999).CrossRefGoogle Scholar
  9. 9.
    T. Jiang, G. A. Ozin, A. Verma, and R. L. Bedard, J. Mater. Chem. 8, 1649 (1998).CrossRefGoogle Scholar
  10. 10.
    M. Batzill and U. Diebold, Prog. Surf. Sci. 79, 47 (2005).CrossRefGoogle Scholar
  11. 11.
    S. A. Pianaro, P. R. Bueno, E. Longo, and J. A. Varela, J. Mater. Sci. Lett. 14, 692 (1995).CrossRefGoogle Scholar
  12. 12.
    V. E. Bochenkov and G. B. Sergeev, Russ. Chem. Rev. 76, 1013 (2007).CrossRefGoogle Scholar
  13. 13.
    A. Ammari, B. Bellal, N. Zebbar, et al., Thin Solid Films 632, 66 (2017).CrossRefGoogle Scholar
  14. 14.
    S. A. Bashkirov, V. F. Gremenok, and V. A. Ivanov, Semiconductors 45, 749 (2011).CrossRefGoogle Scholar
  15. 15.
    K. T. R. Reddy, N. K. Reddy, and R. W. Miles, Solar Energy Mater. Solar Cells 90, 3041 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Sharon and K. Basavaswaran, Solar Cells 25, 97 (1988).CrossRefGoogle Scholar
  17. 17.
    M. Gunasekaran and M. Ichimura, Solar Energy Mater. Solar Cells 91, 774 (2007).CrossRefGoogle Scholar
  18. 18.
    L. S. Parshina, O. D. Khramova, O. A. Novodvorsky, A. A. Lotin, I. A. Petukhov, F. N. Putilin, and K. D. Shcherbachev, Semiconductors 51, 407 (2017).CrossRefGoogle Scholar
  19. 19.
    C. Cifuentes, M. Botero, E. Romero, et al., Brazil. J. Phys. 36 (3B), 1046 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Devika, N. K. Reddy, F. Patolsky, and K. R. Gunasekhar, J. Appl. Phys. 104, 124503 (2008).CrossRefGoogle Scholar
  21. 21.
    S. A. Bashkirov, V. F. Gremenok, V. A. Ivanov, and V. V. Shevtsova, Phys. Solid State 54, 2497 (2012).CrossRefGoogle Scholar
  22. 22.
    B. Stjerna, E. Olsson, and C. G. Granqvist, J. Appl. Phys. 76, 3797 (1994).CrossRefGoogle Scholar
  23. 23.
    J. Park, M. Song, W. M. Jung, et al., Bull. Korean Chem. Soc. 33, 3383 (2012).CrossRefGoogle Scholar
  24. 24.
    P. Sinsermsuksakul, K. Hartman, S. B. Kim, et al., Appl. Phys. Lett. 102, 053901 (2013).CrossRefGoogle Scholar
  25. 25.
    V. S. Popov, V. G. Sevast’yanov, and N. T. Kuznetsov, Kompoz. Nanostrukt., No. 1, 33 (2012).Google Scholar
  26. 26.
    L. N. Maskaeva, E. A. Fedorova, V. F. Markov, et al., Butler. Soobshch. 37 (2), 1 (2014).Google Scholar
  27. 27.
    L. N. Maskaeva, S. S. Tulenin, A. A. Timina, and V. F. Markov, Butler. Soobshch. 45 (3), 72 (2016).Google Scholar
  28. 28.
    S. S. Tulenin, A. A. Timina, L. N. Maskaeva, and V. F. Markov, Russ. J. Appl. Chem. 90, 91 (2017).CrossRefGoogle Scholar
  29. 29.
    L. P. Joshi, L. Risal, and S. P. Shrestha, J. Nepal Phys. Soc. 3, 1 (2015).CrossRefGoogle Scholar
  30. 30.
    S. H. Chaki, M. D. Chaudhary, and M. P. Deshpande, J. Semicond. 37, 053001(2016).CrossRefGoogle Scholar
  31. 31.
    O. D. Nnanyere, J. Nat. Sci. Res. 5, 124 (2015).Google Scholar
  32. 32.
    M. Safonova, E. Mellikov, V. Mikli, et al., Adv. Mater. Res. 1117, 183 (2015).CrossRefGoogle Scholar
  33. 33.
    T. N. Fetisova, V. R. Mirolyubov, and S. F. Katyshev, Russ. J. Gen. Chem. 77, 1643 (2007).CrossRefGoogle Scholar
  34. 34.
    V. A. Nazarenko, V. P. Antonovich, and E. M. Nevskaya, The Hydrolysis of Metal Ions in Diluted Solutions (Atomizdat, Moscow, 1979) [in Russian].Google Scholar
  35. 35.
    V. B. Spivakovskii, Analytical Chemistry of Tin (Nauka, Moscow, 1975) [in Russian].Google Scholar
  36. 36.
    R. M. Cigala, F. Crea, C. de Stefano, et al., Monatsh. Chem. 144, 761 (2013).CrossRefGoogle Scholar
  37. 37.
    O. V. Reva and T. N. Vorob’eva, Russ. J. Appl. Chem. 75, 700 (2002).CrossRefGoogle Scholar
  38. 38.
    F. Séby, M. Potin-Gautier, E. Giffaut, and O. F. X. Donard, Geochim. Cosmochim. Acta 65, 3041 (2001).CrossRefGoogle Scholar
  39. 39.
    Yu. Yu. Lur’e, Handbook of Analytical Chemistry (Khimiya, Moscow, 1989) [in Russian].Google Scholar
  40. 40.
    R. A. Yusupov and S. A. Bakhteev, Russ. J. Phys Chem. A 83, 2188 (2009).CrossRefGoogle Scholar
  41. 41.
    J. N. Butler, Ionic Equilibrium: A Mathematical Approach (Addison-Wesley, Reading, MA, 1964).Google Scholar
  42. 42.
    M. Pettine, F. J. Millero, and G. Macchi, Anal. Chem. 53, 1039 (1981).CrossRefGoogle Scholar
  43. 43.
    R. M. Cigala, F. Crea, and C. de Stefano, Geochim. Cosmochim. Acta 87, 1 (2012).CrossRefGoogle Scholar
  44. 44.
    T. Z. Din’, R. A. Yusupov, and S. A. Bakhteev, Vestn. Kazan. Tekhnol. Univ. 15 (15), 49 (2012).Google Scholar
  45. 45.
    T. Z. Din’, S. A. Bakhteev, and R. A. Yusupov, Vestn. Kazan. Tekhnol. Univ. 16 (17), 47 (2013).Google Scholar
  46. 46.
    T. Z. Din’, S. A. Bakhteev, and R. A. Yusupov, Vestn. Kazan. Tekhnol. Univ. 16 (4), 92 (2013).Google Scholar
  47. 47.
    R. A. Yusupov, S. A. Bakhteev, and S. G. Smerdova, Russ. J. Phys. Chem. A 84, 1263 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. N. Maskaeva
    • 1
    • 2
  • E. A. Fedorova
    • 1
  • R. A. Yusupov
    • 3
  • V. F. Markov
    • 1
    • 2
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Ural Institute of State Fire Service of EMERCOM of RussiaYekaterinburgRussia
  3. 3.Kazan National Research Technological UniversityKazanRussia

Personalised recommendations