Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 965–967 | Cite as

Formation of Nanostructures on the Nickel Metal Surface in Ionic Liquid under Anodizing

  • O. K. Lebedeva
  • N. V. Root
  • D. Yu. Kultin
  • K. B. Kalmykov
  • L. M. Kustov
Physical Chemistry of Nanoclusters and Nanomaterials

Abstract

The formation of nanostructures in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide on the surface of a nickel electrode during anodizing was studied. Hexagonal ordered surface nanostructures were found to form in a narrow range of current densities. The form of the potential transients of the nickel electrode corresponded to the morphology of the nickel surface obtained which was studied by electron microscopy. No other types of nanostructures were found under the electrosynthesis conditions under study.

Keywords

ionic liquids nanostructures nickel oxide anodizing potential transients 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.-S. Wu, Y.-A. Huang, C.-H. Yang, and J.-J. Jow, J. Hydrogen Energy 32, 4153 (2007). doi 10.1016/j.ijhydene.2007.06.001CrossRefGoogle Scholar
  2. 2.
    K. R. Prasad and N. Miura, Appl. Phys. Lett. 85, 4199 (2004). doi 10.1063/1.1814816CrossRefGoogle Scholar
  3. 3.
    V. Srinivasan and J. W. Weidner, J. Electrochem. Soc. 144, L210 (1997). doi 10.1149/1.1837859CrossRefGoogle Scholar
  4. 4.
    R. Hayes, G. G. Warr, and R. Atkin, Chem. Rev. 115, 6357 (2015). doi 10.1021/cr500411qCrossRefGoogle Scholar
  5. 5.
    O. Lebedeva, G. Jungurova, D. Kultin, et al., Green Chem. 13, 1004 (2011). doi 10.1039/C0GC00880JCrossRefGoogle Scholar
  6. 6.
    O. Lebedeva, I. Kudryavtsev, D. Kultin, et al., J. Phys. Chem. C 118, 21293 (2014). doi 10.1021/jp507319rCrossRefGoogle Scholar
  7. 7.
    O. K. Lebedeva, D. Yu. Kultin, N. V. Root, L. M. Kustov, S. F. Dunaev, and V. B. Kazansky, Dokl. Chem. 479 (2), 41 (2018).Google Scholar
  8. 8.
    N. V. Root, D. Yu. Kultin, L. M. Kustov, I. K. Kudryavtsev, and O. K. Lebedeva, Russ. J. Phys. Chem. A 91, 213 (2017). doi 10.7868/S0044453717020248CrossRefGoogle Scholar
  9. 9.
    A. M. Abd-Elnaiem and A. Gaber, Int. J. Electrochem. Sci. 8, 9741 (2013). WOS 000323547600071Google Scholar
  10. 10.
    M. Neergat and K. R. Weisbrod, Corros. Sci. 53, 3983 (2011). doi 10.1016/j.corsci.2011.08.001CrossRefGoogle Scholar
  11. 11.
    J. M. Macak, H. Hildebrand, U. Marten-Jahns, and P. Schmuki, J. Electroanal. Chem. 621, 254 (2008).CrossRefGoogle Scholar
  12. 12.
    O. Lebedeva, D. Kultin, I. Kudryavtsev, et al., Electrochem. Commun. 75, 78 (2017). doi 10.1016/j.elecom. 2017.01.005CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. K. Lebedeva
    • 1
  • N. V. Root
    • 1
  • D. Yu. Kultin
    • 1
  • K. B. Kalmykov
    • 1
  • L. M. Kustov
    • 1
    • 2
  1. 1.Department of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations