Template-Free Solvothermal Synthesis of Flower-Like BiOBr Microspheres in Ethanol Medium for Photocatalytic Applications
Abstract
Three-dimensionally (3D) BiOBr microflowers were prepared by a simple solvothermal method, employing Bi(NO3)3 · 5H2O and NaBr as starting reagents in ethanol. The structural, light absorption and morphological properties of as-prepared BiOBr microspheres were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis diffuse reflectance spectroscopy (DRS), etc. The results showed that ethanol acted not only as a solvent but also as a template in 3D BiOBr preparation. The BiOBr microspheres exhibited superior photocatalytic activity compared with 2D BiOBr nanosheets, far exceeding that of TiO2 (Degussa, P25). It was found that both superoxide radical (O2•-) and holes (h+) played a key role in the degradation of RhB by BiOBr microflowers.
Keywords
solvothermal method BiOBr microflowers ethanol solvent photocatalysis RhBPreview
Unable to display preview. Download preview PDF.
References
- 1.L. Zhong and F. Haghighat, Build. Environ. 91, 191 (2015).CrossRefGoogle Scholar
- 2.H. Ren, P. Koshy, W. F. Chen, S. Qi, and C. C. Sorrell, J. Hazard. Mater. 325, 340 (2017).CrossRefGoogle Scholar
- 3.R. Molinari, C. Lavorato, and P. Argurio, Catal. Today 281, 144 (2017).CrossRefGoogle Scholar
- 4.L. Zhao, X. Zhang, C. Fan, Z. Liang, and P. Han, Phys. B (Amsterdam, Neth.) 407, 3364 (2012).CrossRefGoogle Scholar
- 5.H. Cheng, B. Huang, and Y. Dai, Nanoscale 6, 2009 (2014).CrossRefGoogle Scholar
- 6.D. Mao, X. Lü, Z. Jiang, J. Xie, X. Lu, W. Wei, and A. M. Showkot Hossain, Mater. Lett. 118, 154 (2014).CrossRefGoogle Scholar
- 7.K. Natarajan, H. C. Bajaj, and R. J. Tayade, J. Ind. Eng. Chem. 34, 146 (2016).CrossRefGoogle Scholar
- 8.J. Wang and Y. Li, Chem. Commun. 18, 2320 (2003).CrossRefGoogle Scholar
- 9.H. Li, J. Liu, T. Hu, N. Du, S. Song, and W. Hou, Mater. Res. Bull. 77, 171 (2016).CrossRefGoogle Scholar
- 10.C. Xue, J. Xia, T. Wang, S. Zhao, G. Yang, B. Yang, Y. Dai, and G. Yang, Mater. Lett. 133, 274 (2014).CrossRefGoogle Scholar
- 11.Y. Fang, T. Hua, W. Feng, D. M. Johnson, and Y. Huang, Catal. Commun. 80, 15 (2016).CrossRefGoogle Scholar
- 12.J. Li, S. Sun, C. Qian, L. He, K.K. Chen, T. Zhang, Z. Chen, and M. Ye, Chem. Eng. J. 297, 139 (2016).CrossRefGoogle Scholar
- 13.K. Dai, D. Li, J. lv, L. Lu, C. Liang, and G. Zhu, Mater. Lett. 136, 438 (2014).CrossRefGoogle Scholar
- 14.Y. Zhao, X. Tan, T. Yu, and S. Wang, Mater. Lett. 164, 243 (2016).CrossRefGoogle Scholar
- 15.P. Wang, P. Yang, Y. Bai, T. Chen, X. Shi, L. Ye, and X. Zhang, J. Taiwan Inst. Chem. E 68, 295 (2016).CrossRefGoogle Scholar
- 16.B. Chai, H. Zhou, F. Zhang, X. Liao, and M. Ren, Mater. Sci. Semicond. Process. 23, 151 (2014).CrossRefGoogle Scholar
- 17.A. C. Mera, H. Váldes, F. J. Jamett, and M. F. Meléndrez, Solid State Sci. 65, 15 (2017).CrossRefGoogle Scholar
- 18.M. Jia, X. Hu, S. Wang, Y. Huang, and L. Song, J. Environ. Sci. 35, 172 (2015).CrossRefGoogle Scholar
- 19.Z. Chen, J. Zeng, J. Di, D. Zhao, M. Ji, J. Xia, and H. Li, Green Energ. Environ. 2, 124 (2017).CrossRefGoogle Scholar
- 20.Z. Liu, B. Wu, D. Xiang, and Y. Zhu, Mater. Res. Bull. 47, 3753 (2012).CrossRefGoogle Scholar
- 21.X. Qin, H. Cheng, W. Wang, B. Huang, X. Zhang, and Y. Dai, Mater. Lett. 100, 285 (2013).CrossRefGoogle Scholar
- 22.H. Cheng, B. Huang, Z. Wang, X. Qin, X. Zhang, and Y. Dai, Chem. Eur. J. 17, 8039 (2011).CrossRefGoogle Scholar
- 23.G. Li, F. Qin, H. Yang, Z. Lu, H. Sun, and R. Chen, Eur. J. Inorg. Chem. 2012, 2508 (2012).CrossRefGoogle Scholar
- 24.Y. Xiao, X. Song, Z. Liu, R. Li, X. Zhao, and Y. Huang, J. Ind. Eng. Chem. 45, 248 (2017).CrossRefGoogle Scholar
- 25.L. Ye, Y. Su, X. Jin, H. Xie, F. Cao, and Z. Guo, Appl. Surf. Sci. 311, 858 (2014).CrossRefGoogle Scholar
- 26.M. Shang, W. Wang, and L. Zhang, J. Hazard. Mater. 167, 803 (2009).CrossRefGoogle Scholar
- 27.X. Shi, X. Chen, X. Chen, S. Zhou, S. Lou, Y. Wang, and L. Yuan, Chem. Eng. J. 222, 120 (2013).CrossRefGoogle Scholar
- 28.R. Li, X. Gao, C. Fan, X. Zhang, Y. Wang, and Y. Wang, Appl. Surf. Sci. 355, 1075 (2015).CrossRefGoogle Scholar
- 29.Y. Feng, L. Li, J. Li, J. Wang, and L. Liu, J. Hazard. Mater. 192, 538 (2011).CrossRefGoogle Scholar
- 30.X. Zhang, Z. Ai, F. Jia, and L. Zhang, J. Phys. Chem. C 112, 747 (2008).CrossRefGoogle Scholar
- 31.S. Kumar, N. Verma, and M. Singla, Dig. J. Nanomater. Biostruct. 7, 607 (2012).Google Scholar
- 32.Y. Huo, J. Zhang, M. Miao, and Y. Jin, Appl. Catal. B 111–112, 334 (2012).CrossRefGoogle Scholar
- 33.L. Zhang, X. F. Cao, X. T. Chen, and Z. L. Xue, J. Colloid Interface Sci. 354, 630 (2011).CrossRefGoogle Scholar
- 34.L. Zhou and P. O’Brien, J. Phys. Chem. Lett. 3, 620 (2012).CrossRefGoogle Scholar
- 35.S. Liu, K. Yin, W. Ren, B. Cheng, and J. Yu, J. Mater. Chem. 22, 17759 (2012).CrossRefGoogle Scholar
- 36.J. Xia, S. Yin, H. Li, H. Xu, L. Xu, and Y. Xu, Dalton Trand. 40, 5249 (2011).CrossRefGoogle Scholar
- 37.S.-L. Wang, L.-L. Wang, W.-H. Ma, D.M. Johnson, Y.-F. Fang, M.-K. Jia, and Y.-P. Huang, Chem. Eng. J. 259, 410 (2015).CrossRefGoogle Scholar
- 38.M. Miyauchi, Phys. Chem. Chem. Phys. 10, 6258 (2008).CrossRefGoogle Scholar