Russian Journal of Physical Chemistry A

, Volume 92, Issue 5, pp 889–895 | Cite as

Hydrolysis of Methylal Catalyzed by Ion Exchange Resins in Aqueous Media

  • Gaoyin He
  • Fangfang Dai
  • Midong Shi
  • Qingsong Li
  • Yingmin Yu
Chemical Kinetics and Catalysis


In the present work, the chemical equilibrium and kinetics of methylal (PODE1) hydrolysis catalyzed by ion–exchange resin in aqueous solutions were investigated. The study covers temperatures between 333.15 and 363.15 K at various starting compositions covering (PODE1 + MeOH)/water molar ratio ranges from 0.5 to 1.5 in a time scale. On the basis of the experimental results, a mole fraction-based model of the chemical equilibrium and a pseudohomogeneous model are proposed to fit data based on true amount of monomeric formaldehyde. It has been demonstrated that the hydrolysis of PODE1 is slightly endothermic with the enthalpy 8.19 kJ/mol and the rate determining step. Finally, a feed–forward artificial neural networks (ANN) model is developed to model the concentration change of methanol in aqueous solutions. The results showed that the predicted data from designed ANN model were in good agreement with the experimental data with the coefficient (R2) of 0.98. Designed ANN provides a reliable method for modeling the hydrolysis reaction of methylal (PODE1).


reaction kinetics polyoxymethylene dimethyl ethers formaldehyde artificial neural network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Jiao, J. J. Li, X. L. Pan, J. P. Xiao, H. B. Li, et al., Science 351 (6277), 1065 (2016).CrossRefGoogle Scholar
  2. 2.
    N. Schmitz, F. Homberg, J. Berje, J. Burger, and H. Hasse, Ind. Eng. Chem. Res. 54, 6409 (2015).CrossRefGoogle Scholar
  3. 3.
    D. R. Gentner, G. Isaacman, D. R. Worton, A. W. Chan, T. R. Dallmann, L. Davis, S. Liu, D. A. Day, L. M. Russell, and K. R. Wilson, Proc. Natl. Acad. Sci. 109, 18318 (2012).CrossRefGoogle Scholar
  4. 4.
    J. Burger, M. Siegert, E. Strofer, and H. Hasse, Fuel 89, 3315 (2010).CrossRefGoogle Scholar
  5. 5.
    L. Pellegrini, M. Marchionna, R. Patrini, and S. Florio, SAE Technical Paper (2013).Google Scholar
  6. 6.
    L. Wang, W. T. Wu, T. Chen, Q. Chen, and M. Y. He, Chem. Eng. Commun. 201, 709 (2014).CrossRefGoogle Scholar
  7. 7.
    J. Burger and H. Hasse, Chem. Eng. Sci. 99, 118 (2013).CrossRefGoogle Scholar
  8. 8.
    J. Burger, E. Strofer, and H. Hasse, Chem. Eng. Res. Des. 91, 2648 (2013).CrossRefGoogle Scholar
  9. 9.
    R. Y. Wang, Z. W. Wu, Z. F. Qin, C. M. Chen, H. Q. Zhu, et al., Catal. Sci. Technol. 6, 993 (2015).CrossRefGoogle Scholar
  10. 10.
    P. Trop, B. Anicic, and D. Goricanec, Energy 77, 125 (2014).CrossRefGoogle Scholar
  11. 11.
    J. Q. Zhang, M. H. Shi, D. Y. Fang, and D. H. Liu, React. Kinet. Mech. Catal. 11, 459 (2014).CrossRefGoogle Scholar
  12. 12.
    N. Schmitz, J. Burger, and H. Hasse, Ind. Eng. Chem. Res. 54, 12553 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Burger, E. Strofer, and H. Hasse, Ind. Eng. Chem. Res. 51, 12751 (2012).CrossRefGoogle Scholar
  14. 14.
    Y. P. Zhao, X. Zheng, H. Chen, Y. C. Fu, J. Y. Shen, J. Energy. Chem. 22, 833 (2013).CrossRefGoogle Scholar
  15. 15.
    E. Jorjani, Chehreh S. Chelgani Chehreh, and Sh. Mesroghli, Fuel 87, 2727 (2008).CrossRefGoogle Scholar
  16. 16.
    H. Eskandarloo, A. Badiei, and M. A. Behnajady, Ind. Eng. Chem. Res. 53, 6881 (2014).CrossRefGoogle Scholar
  17. 17.
    G. J. Millar, G. L. Miller, S. J. Couperthwaite, and S. Papworth, Sep. Purif. Technol. 163, 79 (2016).CrossRefGoogle Scholar
  18. 18.
    Y. Y. Zheng, Q. Tang, T. F. Wang, and J. F. Wang, Chem. Eng. Sci. 134, 758 (2015).CrossRefGoogle Scholar
  19. 19.
    J. O. Drunsel, M. Renner, and H. Hasse, Chem. Eng. Res. Des. 90, 696 (2012).CrossRefGoogle Scholar
  20. 20.
    I. Hahnenstein, M. Albert, H. Hasse, C. G. Kreiter, and G. Maurer, Ind. Eng. Chem. Res. 34, 440 (1995).CrossRefGoogle Scholar
  21. 21.
    V. K. Pareek, M. P. Brungs, A. A. Adesina, and R. Sharma, J. Photochem. Photobiol., A 149, 139 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Gaoyin He
    • 1
  • Fangfang Dai
    • 2
  • Midong Shi
    • 1
  • Qingsong Li
    • 1
  • Yingmin Yu
    • 1
  1. 1.The State Key Lab of Heavy Oil Processing, College of Chemical EngineeringChina University of Petroleum–East ChinaQingdao, ShandongChina
  2. 2.College of Chemistry and Chemical EngineeringShaanXi University of Science and TechnologyXian, ShaanxiChina

Personalised recommendations